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ABSTRACT 
Educational games have demonstrated benefits across a variety of 

subjects and skills. To understand how a well-designed game en-

hances learning, it is crucial to analyze students’ choices 

throughout the learning process. This can be done with the frame-

work of problem-solving strategies. Existing studies have mainly 

focused on summarizing, categorizing, and correlating strategies 

with learning outcomes. However, they have seldom visualized the 

temporal changes in problem-solving strategies at a more granular 

level to demonstrate their development. To fill this gap, the present 

study investigated how students engaged with Water Cycle, a ge-

ography game designed to teach water-movement processes to 

middle school students. Specifically, the study sought to summarize 

students’ problem-solving strategies, visualize their temporal 

changes, and evaluate their effectiveness in winning the game. 

Within a single game, the students demonstrated an increase in the 

complexity and effectiveness of their problem-solving strategies. 

These findings complement existing research and underscore the 

potential of using game learning analytics to study the temporal 

evolution of problem-solving in educational games. 

Keywords 
Problem-solving strategy, educational game, temporal analysis, 

data visualization, STEM education 

1. INTRODUCTION
Game-based learning (GBL) is the use of games, usually digital 

ones, to achieve specific learning outcomes [42]. It includes creat-

ing educational games [7, 40, 47] and adapting commercially 

available ones (e.g., SimCity [35], Portal [1], and Minecraft [37]) 

for educational purposes. GBL has gained attention due to the large 

number of available games and their diverse learning benefits. 

While the results concerning the effectiveness of GBL compared to 

traditional teaching methods are mixed, a recent meta-analysis [26] 

showed that educational games produce a large effect size (g = 

.705) on science achievement. Another meta-analysis [45] indi-

cated small effects on motivational (g = .36), cognitive (g = .49), 

and behavioral learning outcomes (g = .25). 

To further explore why a well-designed game benefits learning, re-

searchers have scrutinized the interplay between playing and 

learning [44, 20]. A pivotal aspect of this exploration has been 

players’ choices. To achieve their goals, players make moment-by-

moment choices based on the game’s situation and rules. After tak-

ing an action, they interpret the result for subsequent choice 

making. Through this iterative process, players make meaning from 

their choices [50]. In the context of an educational game, a learner 

must learn to make meaningful choices to fulfill both the game’s 

goal and the learning objectives [43]. As the learner advances in the 

game, the choices they make may evolve over time [50], reflecting 

the progression of learning. 

Choice making within an educational game can be examined 

through the framework of problem-solving strategies. A problem-

solving strategy is the reasoning underlying a specific choice. Ex-

isting studies have explored problem-solving strategies in subjects 

such as math [28, 18, 30], physics [22, 31], and biology [48], but 

limited work has looked at other domains, including geography. 

Furthermore, scholars have summarized and categorized strategies, 

and they have correlated them with learning outcomes. However, 

they have seldom visualized strategies’ temporal changes to 

demonstrate the progression of problem-solving skills. This study 

presents an exploratory analysis, based on game learning analytics, 

of how a group of students engaged with Water Cycle, a geography 

game designed to teach Earth’s water movement processes. 

We seek to answer three research questions (RQs). RQ1: What 

problem-solving strategies do the students employ? RQ2: How do 

these strategies develop over time? RQ3: Are these strategies effec-

tive? 

This study makes methodological and practical contributions. 

Methodologically, data-driven techniques enrich the findings of 

traditional methods, such as cross-sectional studies and experi-

ments. Analyzing data on a finer time scale and with a large sample 

size provides a comprehensive understanding of strategy develop-

ment. Practically, the study’s findings allow for real-time 

intervention by teachers to support instruction on problem-solving 

skills. Also, choices have been regarded both as interventions and 

learning outcomes in education research [12]. This study comple-

ments the literature by examining choices as dynamic processes. 

2. LITERATURE REVIEW

2.1 Game-Based Learning
Research on GBL emphasizes the application of learning theories 

to support the design of educational games and the use of diverse 

methods to explore learners’ experiences with the games. [42] sum-

marized the theoretical foundation of GBL into four aspects: 

affective, behavioral, cognitive, and sociocultural. According to a 

systematic review [48], GBL research methods are typically exper-

iments (e.g., [40]), surveys (e.g., [4]), interviews/focus groups (e.g., 

[37, 2]), and observations (e.g., [32]). [34] classified experimental 

designs for GBL into three categories: value-added research (ex-

amining a certain game feature), cognitive consequences research 
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(assessing cognitive achievement), and media-comparison research 

(comparing a game with other media). These research methods con-

tribute insights into both theory and practical design considerations. 

In GBL research, conventional empirical methods (e.g., experi-

ments, surveys, and interviews) are suitable for describing and 

explaining the game’s overall learning experience, but they tend to 

generate coarse process data. While user observations and think-

alouds (e.g., [9]) have commonly been employed for collecting pro-

cess data, they mainly provide qualitative insights. Log data can 

bridge this gap as it captures scalable, fine-grained data about the 

learning process [14]. Collecting log data is unobtrusive, which al-

lows scholars to study GBL in both natural and lab settings [25]. 

By using machine learning models and statistics [25], data-driven 

methods complement the results of conventional methods [14]. 

Also, by using fine-grained process data, researchers and educators 

can detect meaningful patterns in gameplay behavior in real time, 

thus enhancing our understanding of human learning and play. This 

automated detection lays the foundation for game-based assess-

ment and adaptive learning [23, 41], which enables automated 

scaffolding in the game and real-time teacher interventions. 

2.2 Game Learning Analytics 
Game learning analytics (GLA) leverages real-time log data col-

lected from educational games, thus detailing student interactions 

in games. This allows for fine-grained analysis of their learning and 

play. GLA research serves multiple purposes. The primary one is 

game-based assessment, which involves the measurement of stu-

dents’ knowledge and skills while they engage in gameplay [46]. 

The second one is modeling student behaviors and building auto-

mated detectors that target constructs or in-game actions, such as 

affective states [21], off-task behaviors [8], persistence [39], and 

learning progression [36]. The third purpose is predictive modeling, 

which seeks to identify key indicators that predict a learning out-

come of interest [6, 13]. The fourth one is offering personalized 

interventions or scaffolding in the game or from the teacher [27]. 

The fifth purpose involves informing data-driven design [24]; for 

example, by revealing points where players encounter difficulties 

or decide to quit. Finally, GLA can be used for student profiling 

and clustering students into groups [29]. 

GLA faces the challenge of producing a generalized interpretation 

of the results. The gaming environment is open ended and complex, 

allowing players to achieve their goals in multiple ways [49]. Thus, 

their learning and gameplay behaviors are usually interpreted in the 

specific context of the game. To enhance the generalizability of the 

findings across games, subjects, and populations, it is recom-

mended to anchor data analysis in a learning theory [15]. We 

selected problem-solving strategy theory, which has undergone em-

pirical scrutiny. 

2.3 Problem-Solving Strategy 

2.3.1 Insights from Cognitive Psychology 
In problem-solving theory, a strategy is used for “planning and 

monitoring the solution of problems” [33]. It operates at a higher 

level of abstraction than a concrete solution, serving as a guide to 

problem-solving. A basic problem-solving process typically con-

sists of four steps: constructing a representation of the problem, 

searching for a solution, implementing solutions, and achieving the 

goal. A strategy may be invoked in the initial two steps and imple-

mented in the remaining two. As students accumulate knowledge 

in an area, their problem-solving strategies become more effective 

and sophisticated. Accordingly, in complex problem situations, 

problem-solving may not follow a linear path, requiring continuous 

testing of solutions until a successful one is found. 

Two general strategies that are relevant to Water Cycle are means-

ends analysis [38] and schema-driven strategies [10, 11]. Means-

ends analysis [38] entails iteratively assessing the difference be-

tween the goal state and the current state and taking action to reduce 

this difference until the goal is achieved. Means-ends analysis is 

well suited for problems with a clearly defined goal state and initial 

state [16]. In contrast, schema-driven strategies involve the activa-

tion and application of schemata–the representational structures of 

knowledge related to concepts [3]. In problem-solving, a problem 

schema contains structured information about the goal, constraints, 

and solutions associated with a specific problem type [17]. If a 

schema is invoked during problem representation, the problem 

solver will implement the solution more directly and bypass or re-

duce searches in the problem space [16]. 

Studies that compared experts and novices in problem-solving 

strategies have shown how strategies become more effective and 

sophisticated. This evidence suggests that experts possess schemata 

that enable them to effectively use sophisticated strategies [5]. For 

example, the study by [11] found that while novices categorized 

physics problems based on superficial features such as “falling bod-

ies,” experts categorized them based on deeper knowledge (physics 

principles). This difference in problem representation stems from 

disparities in schemata. These kinds of cognitive psychology stud-

ies are valuable for explaining and predicting students’ 

development of problem-solving strategies in the context of GLA. 

2.3.2 Game Learning Analytics Empirical Studies 
Data-driven approaches enable detailed analyses of the develop-

ment of problem-solving strategies 1) on a finer time scale, 2) over 

an extended period, 3) with a large sample size, and 4) in both lab 

and natural settings. This capability can elucidate the comprehen-

sive learning trajectory from novice to expert. 

GLA studies have shown students’ progression from basic to com-

plex effective strategies, which indicates knowledge acquisition in 

educational games. For example, [28] used sequence mining to 

identify the strategies of 30 participants in a math game in grades 

3–7 and compare the complexity of their strategies according to 

their searches of the problem space. In another example, [18] em-

ployed hierarchical cluster analysis, triangulated with visualization 

and think-aloud data, to identify play styles among nine players 

aged 11–13 in a game about algorithmic thinking. [48] utilized mul-

tiple regression to study the correlation between hypothesis-testing 

strategies and two learning outcomes–conceptual learning of sci-

ence and in-game problem-solving performance–among 153 

eighth-grade students in a microbiology game. Other data-driven 

techniques can be explored in educational games. 

3. GAME DESIGN 
Water Cycle is a turn-based card game created by Field Day Lab at 

the University of Wisconsin–Madison. Its target audience is middle 

school students in grades 5–8. 

In geography, the water cycle is the circulation of water within 

Earth’s systems. Dynamic movements driven by gravity and solar 

energy continuously alter water’s distribution while maintaining its 

overall quantity constant. Water Cycle contains six systems–river, 

clouds, surface, earth, ocean, and atmosphere–which are depicted 

as a hexagon (Figure 1). The game also comprises six water cycle 

processes, each with between one and three directions and with dif-

ferent origin and destination systems (Table 1). 



 

Figure 1. Earth’s Six Water Cycle Systems 

Table 1. Water Cycle Processes and Directions 

Water Cycle Process Directions 

Evaporation Surface to atmosphere, ocean to 

atmosphere, river to atmosphere 

Runoff Surface to river, surface to ocean 

Condensation Atmosphere to clouds 

Precipitation Clouds to ocean, clouds to river, 

clouds to surface 

Soil absorption Surface to earth 

Ground water expansion Earth to river, earth to ocean 

3.1 Rules of Play 
Setup. A student plays as the Red Team with the goal of accumu-

lating more points than the Blue Team (the computer). Six 

hexagons in the center of the screen represent Earth’s systems (Fig-

ure 2). Both teams are randomly assigned 4–5 cards from a pool of 

12 cards, each belonging to one of six water cycle processes. Each 

card contains brief information about its water cycle process. The 

student can click on the card to view additional information. 

 

Figure 2. The Water Cycle Game 

Gameplay. The student can choose to play a 10-turn or 30-turn 

game. During each turn, the student plays a card and selects the 

color of water droplets (red or blue). This action moves the droplet 

from one zone to another. Then, the computer does the same. When 

the turn ends, the student earns points based on the number of red 

droplets in the designated “current zone,” which represents one of 

the six hexagons, as specified by the game. Similarly, the computer 

earns points based on the number of blue droplets in the current 

zone. The game also designates a “next zone,” which becomes the 

current zone after three turns. The team with the most points at the 

end of the game wins. In addition, players are presented with addi-

tional scaffolding during the first three turns, with arrows displayed 

on the game board to illustrate the outcome of playing each card. 

3.2 Strategy 
The most effective gameplay strategy centers on maximizing the 

number of red water droplets while minimizing the number of blue 

water droplets in both the current and next zones. However, stu-

dents are constrained by the availability of cards and water droplets 

on the board. Furthermore, the cards allocated to students and the 

designation of zones are random. To win, students must evaluate 

the effects of their actions and make the best move given the zones, 

the board, and the available cards in each turn. Ideally, exposure to 

this problem scenario provides students with the opportunity to en-

code and retrieve knowledge of the water cycle. 

In Water Cycle, we consider a problem-solving strategy to be the 

reasoning underlying a specific action taken by a student. This strat-

egy extends beyond the mere selection of actions when presented 

with multiple choices; it includes the process of evaluating the out-

comes of choices and the sequence of choices toward a specific goal. 

Evidence from cognitive psychology shows that players are more 

likely to initially use less effective strategies, such as means-ends 

analysis. As they progress in the game, they gradually adopt more 

effective and sophisticated strategies, potentially leaning toward 

schema-driven approaches. Specifically, they are expected to learn 

to identify the distribution of water droplets on the board, strategi-

cally plan moves based on the current and next zones, and make 

informed decisions regarding the appropriate card and color of the 

water droplet for each move. Throughout this process, students in-

tend to generate and critically evaluate multiple solutions in the 

defined problem space. They may progress from focusing on a sin-

gle decision-making element (color, zone, or direction of the move) 

in one move to recognizing the connections among multiple ele-

ments and understanding the longer-term impacts of their moves. 

Ideally, students’ strategy development would also reflect their ac-

quisition of geographical knowledge in terms of schemata of the 

water cycle processes. 

4. METHOD 

4.1 Dataset 
The data came from a publicly available dataset accessible on the 

Field Day Lab’s website (https://fielddaylab.wisc.edu/). The raw 

data contained time-stamped information about students’ actions, 

such as viewing cards, selecting cards, and moving water droplets. 

As ours was an exploratory analysis, we focused on one data file, 

which comprised 128k actions logged in June 2021. In this file, a 

total of 1,366 games were played. No demographic information 

about the participants was collected. Given that 80.6% of the games 

lasted 10 or fewer turns and that the shortest duration of a complete 

game was 10 turns, we examined data corresponding to the first 10 

turns. 

4.2 Data Analysis 
To answer RQ1 (What problem-solving strategies do the students 

employ?) and RQ2 (How do these strategies develop over time?), 

line plots were used to compare 1) students’ ratios of moving water 

droplets of different colors and 2) the percentages of actions related 

to targeted zones and directions in a turn. Ratios and percentages 

were used to compare the frequency of strategies, thereby account-

ing for variations in the total number of actions across different 

turns. Chi-square tests of independence were conducted to assess 

the statistical significance of temporal changes. To answer RQ3 

(Are these strategies effective?), an evaluation was performed 

based on whether the students gained or lost points. 

To highlight temporal trends, the first 10 turns were divided into 

three periods: the beginning (turns 1–3), the middle (turns 4–6), and 



the end of the game (turns 7–10). The boundaries between these 

periods corresponded to changes in the designated zones. 

5. RESULTS 

5.1 RQ1 and RQ2: What Problem-Solving 

Strategies Do the Students Employ? How 

Do They Develop over Time? 

 

Figure 3. Temporal Trends of the Ratio of Red vs. Blue Water 

Droplet Moves for the Game’s Turns and Periods 

The students exhibited a preference for moving red water droplets 

(their droplets) over blue ones (the computer’s droplets), with a ra-

tio of approximately 2:1. Figure 3 (left) shows the temporal trend 

of this ratio, which reveals a slight decrease over time. A chi-square 

test of independence demonstrated a significant association be-

tween color and turn, χ2 (9, N = 8,014) = 19.7, p = .02. This 

decreasing trend suggests that the students increased the attention 

paid to their opponent’s water droplets as they progressed in the 

game. Distinct peaks at the first and fourth turns, along with two 

separate declining trends in turns 1–3 and 4–6, show that the stu-

dents prioritized manipulating the red water droplets when the 

current zones changed and shifted focus to the blue droplets in sub-

sequent turns. Figure 3 (right) illustrates the color trend in the 

beginning, middle, and end periods of the game, and it highlights 

the persistent preference for red over blue and the decreasing trend. 

 

Figure 4. Temporal Trends of the Targeted Zones and the Di-

rections of the Moves for the Game’s Turns 

Figure 4 illustrates the temporal trends of the targeted zones and the 

directions of the moves for each turn. Generally, the moves con-

cerned either the current zone or the next zone about 2/3 of the time; 

they were unrelated to the designated zones about 1/3 of the time. 

The latter ratio decreased over time, suggesting that the students’ 

moves became more aligned with the goal and available resources. 

A chi-square test of independence demonstrated a significant asso-

ciation between direction and turn, χ2 (45, N = 8,014) = 146.0, p < 

.001. Among the relevant moves, the students most frequently 

moved the water droplets to the current zone, but this trend 

decreased over time after the fourth turn. The second most frequent 

trend–out of the next zone–increased over time. These trends sug-

gest that the students initially demonstrated short-term planning but 

gradually implemented long-term planning. The move out of the 

current zone to the next zone became more frequent over time, 

which indicates a shift from short-term to long-term planning and 

learning to target more than one zone. 

5.2 RQ3: Are These Strategies Effective? 

 

Figure 5. Temporal Trends of Point Changes for Each Turn. 

Note: “+1” denotes a point gain. “−1” denotes a point loss. 

“Current” denotes the point change in the current turn. “Next” 

denotes a future point change when the zone designation 

changes. 

Figure 5 shows the temporal trends of the strategies’ impacts–

whether the students gained or lost points. The lines are quantified 

as relative frequencies representing the percentage of actions in 

each turn. Specifically, “+1 current” represents the percentage of 

actions leading to a point gain in the current turn, such as getting a 

red water droplet in the current zone or moving a blue water droplet 

out of the current zone. “+1 next” reflects a point change in the 

future because the next zone is targeted. “+1 current & −1 next” 

indicates changes in both the current and future turns. Actions re-

lated to irrelevant zones were omitted from the figure. 

According to Figure 5, when ranking the lines by frequency, the 

students most often gained points (“+1 current” and “+1 next”), fol-

lowed by losing points (“−1 next” and “−1 current”) and more 

complex impacts (“+1 current & −1 next” and “−1 current & +1 

next”). This frequency distribution indicates that their actions were 

effective most of the time as they gained points more often than not. 

Furthermore, “+1 current” occurred more frequently than “+1 

next,” while “−1 next” occurred slightly more often than “−1 cur-

rent.” This suggests that the students prioritized immediately 

gaining points, but they were also able to postpone losing points 

through long-term planning. A chi-square test of independence 

demonstrated a significant association between point change and 

turn, χ2 (54, N = 8,014) = 87.0, p = .002. As for the temporal trend, 

there was an increase in occurrences of “−1 next,” “−1 current & 

+1 next,” and “+1 current & −1 next.” This suggests that the stu-

dents acquired long-term planning skills as they played. 

Figure 6 consolidates the lines from Figure 5 into four categories: 

gaining points, losing points, both gaining and losing (“gain_lose”), 

and no impact. When ranking the lines by frequency, the students 

exhibited similar patterns in gaining points and having no impact. 

Both occurred approximately 1/3 of the time. These two lines were 

followed by losing points and by both gaining and losing in differ-

ent turns. This shows that their actions were mostly effective as 

they gained points more often than not. Regarding the temporal 

trend, “gain_lose” slightly increased over time. This suggests that 



the students were increasingly able to target more than one zone as 

they played. Conversely, “no impact” decreased over time, indicat-

ing that the students learned to make more effective moves. The 

peaks and dips at turns 4, 7, and 10 were more prominent than at 

other turns, which suggests that the students reacted to changes in 

zone designation. 

 

Figure 6. Temporal Trends of Gaining and Losing Points at 

Each Turn. Note: “Gain” consolidates “+1 current” and “+1 

next,” and it represents a point gain. “Lose” consolidates “−1 

current” and “−1 next,” and it represents a point loss. 

“Gain_lose” consolidates “+1 current & −1 next” and “−1 cur-

rent & +1 next,” and it represents actions that result in both a 

point gain and a point loss. 

6. DISCUSSION 
The present exploratory study examined students’ problem-solving 

strategies by visualizing their temporal changes and assessing their 

effectiveness. Gameplay data was used to capture students’ actions 

in the geography game Water Cycle. Drawing on the literature, it 

was hypothesized that as the students advanced through the game, 

they would employ more effective and sophisticated strategies. Ide-

ally, this development would signal the acquisition of knowledge 

about geography. 

6.1 Findings and Implications 
Concerning RQ1 (What problem-solving strategies do the students 

employ?) and RQ2 (How do these strategies develop over time?), 

the results indicate that the students consistently prioritized deci-

sion-making elements such as color, targeted zone, and move 

direction for their immediate benefit (i.e., red water droplet and cur-

rent-zone move). As they advanced in the game, their proficiency 

in utilizing resources improved, especially when there was a change 

in the game’s zone designation. This suggests that the students’ 

strategies initially focused on short-term planning and a single ele-

ment; however, gradually, they evolved toward longer-term 

planning and the consideration of multiple elements in each action. 

In other words, the complexity of their strategies progressively in-

creased. 

Regarding RQ3 (Are the strategies effective?), the findings indicate 

that the students’ actions were mostly efficacious. Having no im-

pact was the most common result, but this was followed by gaining 

points. The students demonstrated a tendency to prioritize immedi-

ate point gain and defer losing points. This disparity in their 

responses to gaining and losing points highlights their flexibility in 

alternating between short-term and long-term planning. Over time, 

the students improved their long-term planning, reduced the fre-

quency at which they lost points, and enhanced their ability to target 

more than one zone as they played. 

Furthermore, the increase in the complexity and effectiveness of 

students’ problem-solving strategies suggests a potential shift from 

basic strategies, such as means-end analysis, to advanced ones pos-

sibly resembling schema-driven approaches. This improvement 

may signal the acquisition of knowledge about water cycle pro-

cesses. 

The findings of this study align with and complement existing re-

search on problem-solving. They also underscore the potential of 

using data-driven techniques to study problem-solving strategies on 

a finer time scale, which provides inspiration for further exploration 

of this topic. Future work should anchor data-driven investigations 

in education and psychology theories [15] in order to demonstrate 

their unique methodological contributions. 

6.2 Limitations 
The present study has limitations in its design and dataset. The ab-

sence of external measures, such as pre- and post-tests of geography 

knowledge and demographic surveys, limited our analysis to the 

learning process. As recommended by [51], it is crucial for re-

searchers to connect GLA with outcome variables to enhance our 

understanding of the learning process. Without knowledge tests, 

distinguishing between the behaviors related to learning geography 

and those associated with learning the game’s rules becomes chal-

lenging. 

The dataset posed challenges to the analysis. First, it lacked con-

textual information concerning the game, such as a list of all the 

cards currently available to the player, the distribution of water 

droplets on the board, and the real-time scores of both players. This 

contextual information is crucial for evaluating a specific action 

within its condition. When multiple choices are available, students 

may not initially select the best choice, but they may learn to do so 

through the acquisition of knowledge and the development of prob-

lem-solving strategies. [19] have argued that a comprehensive 

dataset, including time-stamped actions, events, context, player 

characteristics, and interviews, is required for game analytics. Sec-

ond, the dataset lacked player IDs, which prevented us from 

tracking the history of all the games played by each player. Hence, 

we could not determine if a series of games was consecutively 

played by the same player. Having player IDs would be particularly 

beneficial for uncovering the learning trajectories of the problem-

solving strategies used by players who engage in Water Cycle over 

extended periods. 

6.3 Future Work 
Using our dataset, future scholars could employ sequential analysis 

to illustrate the sequential patterns of problem-solving strategies. A 

comparative analysis of turns 1–10 and 11–30 could also be con-

ducted. Moreover, the analytical approach of the present study 

could be applied to the entire dataset collected over 30 months. 

Future work may also involve refining our study design and col-

lecting new data. Incorporating pre- and post-tests of geography 

knowledge would enable a correlation analysis of students’ prob-

lem-solving behaviors and learning outcomes. Furthermore, 

including a standard demographic survey and a game experience 

survey would provide insights into the students’ problem-solving 

processes. Considering higher-order learning outcomes, such as 

knowledge transfer and problem posing, would also be valuable. 
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