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ABSTRACT
Open-design environments, under open-ended learning en-
vironments, provide high agency to learners to define their
goals and pathways toward those goals. However, such en-
vironments could be difficult to navigate through for some
learners due to this openness in goals and activities. Our
long-term goal is to build intelligent pedagogical agents to
support learner activities within these environments using
different dialogue strategies. In this work, we propose to
build a Simulated Students system to emulate learner activi-
ties in an open-design environment. We hope to use this sim-
ulated data in future work to distill knowledge from Large
Language Models (LLMs) to build adaptive, and context-
based reinforcement learning dialogue models for learner
support. We present the early results and proposed direc-
tions of our ongoing work and seek advice on how the differ-
ent strategies that we propose to use in this work could be
further used to build adaptive and context-based dialogue
models for effective learning in open-design environments.
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1. INTRODUCTION
Open-design environments comprise open-ended learning tasks
that facilitate learner agency in the ways they define the
learning goals and pathways toward those goals [11, 7]. Learn-
ing in these environments often involves learners transition-
ing through different self-regulatory learning processes [15]
and cognitive states [9, 3]. However, while transitioning
through these processes a learner could end up in undesir-
able states like “Wheel Spinning” [3] associated with long
action times ultimately leading to a “stuck” state, hence af-
fecting the whole learning process. Dialogue interactions
as a medium have been widely used to support learners in
open-ended learning experiences. Feedback dialogues have
been used to help learners in problem-solving tasks [6]. Self-

explanation dialogues help promote critical thinking in learn-
ers about their actions [1]. Information-delivery dialogues
help learners in the knowledge construction processes through-
out the learning [8]. An intelligent pedagogical agent ac-
tively building learner activity models can support learn-
ing through various dialogue interactions with the learn-
ers. However, these dialogue interactions should be learner-
specific and often require large amounts of diverse learner
data to effectively generate responses outside pre-defined
rule-based scenarios. In this work, we propose to build a
Simulated Students system to generate large amounts of
plausible and diverse learner interaction data in an open-
design learning system, ultimately building a reinforcement
learning model for learner-agent dialogue interactions to sup-
port learning.

To generate agent responses based on these learner action
sequences, we plan to use Large Language Models (LLMs),
e.g. GPT-41. Recently LLMs have seen a huge boom in
their use in different application domains because of their
capabilities to understand and model natural language effi-
ciently. These models have been trained on huge amounts
of internet data and have shown remarkable performance
in many language tasks like question-answering tasks, infor-
mation retrieval, and dialogue systems. These models show
emergent capabilities and have been used in various down-
stream tasks across domains (such as game-design [2]) and
applications (such as conversational agents [5]). Their abil-
ity to act as conversational agents and respond to queries
across domains without additional training shows potential
for their use in open-ended educational systems.

However, LLMs often possess inherent human biases [10],
have a black-box nature of the model outputs, and present
over-generalized responses due to training on a wide variety
of internet data. Hence, we believe their direct use in educa-
tional systems engaging with young children is not suitable.
Moreover, there are potential security risks and ethical con-
cerns to feeding learner data directly into LLMs. Whether
the private learner data should live on the internet and be
used in perpetuity to train LLMs, and how to get mean-
ingful consent for these behaviors, especially when minors
are involved, are some important questions that need to be
thought of before deploying these models directly in educa-
tional systems. We propose to use “Domain Knowledge Dis-
tillation” using prompt engineering [14] to extract responses
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for different simulated learner action sequences from LLMs,
and then locally filter these responses with safety checks be-
fore using them to train a reinforcement learning dialogue
system to support learners.

In this work, we propose to first build a Simulated Students
system to generate learner action sequences based on learner
goals and activity states in an open-design learning environ-
ment. We model these goals and activity states using the
learner-robot interaction data from a summer camp with 14
middle school girls. In our work to actively model learner
actions throughout the learning process [13], we discuss 2
techniques: Sequence Mapping and Hidden Markov Models
to extract 7 activity states (self-regulatory learning phases
and cognitive states) that a learner transitions through in
an open-design environment. In this paper, we further build
on the extracted states to emulate learner behaviors by de-
veloping a Simulated Students system generating sequences
of learner actions. We then propose using the simulated
data as prompts to the GPT 3.5-turbo model to generate
dialogue responses based on learner states. We will use this
generated dialogue dataset in building a reinforcement learn-
ing dialogue model to support learning in our open-design
environment.

2. PROPOSED CONTRIBUTIONS
Our overall aim is to support a learner, working in an open-
ended learning environment, through an adaptive and per-
sonalized dialogue system based on the learner’s current cog-
nitive and affective state using knowledge distillation from
LLMs. For this purpose, in this paper, we propose to build
a Simulated Students system that could emulate different
learner behaviors and generate learner action data based
on those behaviors in open-design learning environments.
The Simulated Students system would help us to generate
large amounts of plausible learner action data as they tran-
sition through the different cognitive and affective states
while progressing toward their goals. We will then evalu-
ate the effectiveness of this generated data to emulate ac-
tual learner behaviors. In future work, we will use LLMs
to analyze open-ended learning spaces and distill knowledge
from LLMs by using various prompts to build a small and
localized dataset for responses to different learner states.
The localized dataset would be further utilized to develop
an RL-based adaptive dialogue system.

The following sections describe the overview of our proposed
Simulated Students system.

2.1 Input and Output for Simulated Students
System

Our proposed Simulated Students system could support 2
types of input-output behaviors. The main assumption of
our Simulated Students system is that the learner’s actions
are always guided by their goals and current activity states
(SRL or cognitive) in open-ended learning environments and
are not random. Hence, we chose to design our system with
only these 2 as the parameters to effectively mimic the actual
learner behaviors.

1. First, is the input of a set of learner goals and a cogni-
tive or SRL state for the learner, to generate an output

representing a set of learner actions toward the spec-
ified goals under the given state. For example, for
input with a goal of “Making the robot move” and a
“Forethought” activity state, our system would gener-
ate plausible action sequences representing learner ac-
tions toward this goal under the given activity state.

2. Second, is just the input of a set of learner goals to gen-
erate a series of learner actions toward achieving those
goals while transitioning through various cognitive and
SRL states throughout the process. For example, for
an input goal list with “Making the robot dance and
then say its name”, our system would generate plausi-
ble learner action sequences toward these goals when
the learner transitions through different activity states.
These transitions between states in the simulated sys-
tem could either occur randomly or based on specified
state and transition probabilities.

The number of actions to be generated can also be specified
as an input, default value of 200 actions (the mean number
of actions from our collected data in an initial study).

2.2 Correctness Criteria for Simulated Students
Output

• Any atomic action generated by the system needs to
be valid under the current system state. For example,
an action to remove an actuator from the robot before
adding it to the robot would be considered invalid.

• For the first I/O type, the generated action sequences
should match the specified cognitive or affective state
based on codes in our pre-defined codebook [13]. This
evaluation could be done either automatically using
scripts or by human coders.

• For the second I/O type, the generated action sequences
should follow the pattern specified by the input state
and transition probabilities for all the learner activ-
ity states. We would evaluate the probability of the
simulated data to be generated by either the HMM or
Sequence Mapping model of the real learner data from
our initial study.

3. METHODS & PRELIMINARY RESULTS
In this section, we describe our data collection method, pro-
posed system design, and current progress.

3.1 Data and System
We collected learner interaction data as a part of a 2 week-
long summer camp with 14 upper-elementary to middle-
school (4th to 7th grades, 8 − 12 years old) girls, recruited
through our community partner from a historically African
American neighborhood in a mid-sized US city. 12 of the
learners identified as Black and 2 with no answer. The
learners were involved in a task to “Create a robot protege
to be presented on a robot runway”. We developed a cus-
tom multimodal system that helped learners design, build,
and program robots using different sensors, actuators, cod-
ing blocks, design materials, and a modified Hummingbird
Robotics kit. Our system also had provisions for learner in-
teraction with their designed robot through dialogues and



video interactions. Our system automatically logged all
learner interaction events with the system: sensor activi-
ties(addition/removal), programming activities (block addi-
tion/updates/removal), dialogue, and video interaction ac-
tivities. We collected 2961 instances of log action data across
all the learners (Mean = 199, SD = 141.15). Each of these
actions also contains timestamp information associated with
them.

3.2 Simulated Students System Design

Goal Understanding. A learner could have multiple goals
and each goal could be either concrete or abstract. Con-
crete goals can be directly accomplished by using one or
more of the fixed possible atomic actions in the system in
no particular order. For example, ”Turn the red LED on

for 5 seconds” requires 2 fixed atomic actions - attaching
the LED to the robot and adding the code block for turning
the red LED on. On the other hand, abstract goals depend
on individual learner definitions and could have various pos-
sible atomic actions. For example, a goal “I want to make

my robot dance” could have various atomic actions associ-
ated with it like repeating a forward and backward motion,
turning the robot’s head to different positions, and making
the robot speak while moving its hands.

One way to map abstract goals to atomic actions is to use
existing learner data to create a base set of abstract goals
and then ask human annotators to add to this set. How-
ever, this process is costly, time-extensive, unscalable, and
might not produce diverse enough goals. We propose to dis-
till domain knowledge from LLMs to generate a large set of
abstract goals with their associations with individual atomic
actions in our system. We will use different prompt engineer-
ing techniques to generate this data and then use different
clustering algorithms like HDBSCAN [4] to assess the diver-
sity of the data. Additionally, we plan to evaluate the safety
and usability of the data using human experts.

Goal Matching & Atomic Action Categorization. We
use BERT-based sentence transformers [12] to calculate em-
beddings for the input goal and then calculate cosine similar-
ity (threshold 70%) between the GPT-generated goal data
and the input embeddings to select the best goal. In case of
no match, we would add this goal to the dataset and use it as
a seed to generate more related goals. We will also retrieve
atomic actions and their execution order from the dataset
based on the initial goal matching. Each Atomic action has
an associated set of sensors and code blocks, which will be
used as input for further stages in the simulation pipeline.

Simulation Based on Goal and Learner State Inputs.
This part of the system handles the first I/O type and gen-
erates the learner action sequence based on the input learner
state and goals. We have developed pseudocode for each
learner activity state based on the rules defined in our pre-
vious work [13]. We propose to randomly select a plausible
action from all the actions at a particular time and then
append it to the generated action sequence based on the de-
fined pseudocode. We would also experiment with selecting

actions based on the probability distribution of the actual
learner actions in an activity state based on our collected
system data from the summer camp.

Simulation Based on Learner Goal. This part of the sys-
tem handles the second I/O type and generates the learner
action sequences based on the input set of learner goals. We
will experiment with the following 3 ways of transitioning
between different activity states and selecting actions inside
the activity state:

• Random. In this method, we will randomly (with equal
probabilities) select a learner activity state, the num-
ber of actions to generate in that state (maximum 20),
and the plausible action in that state. We hope this
will give us a more general view of all plausible learner
actions and the transitions between them. However,
this could also lead to impossible or unobserved state
transitions in the real learner activity data.

• Using Initialization from HMM. In this method, we
would initialize the start and transition probabilities
for every activity state based on the HMM model of
the real learner data as described in our previous work
[13]. The number of actions and the plausible action
for a state will still be selected randomly to get more
diverse action sequences. We believe this will generate
data that will mimic the actual learner behaviors while
adding diversity to the generated learner sequence of
actions.

• Using Initialization from Sequence Mapping. We
would initialize the start and transition probabilities
for every activity state based on the Sequence Map-
ping model of the real learner data as described in
[13]. We would randomly select the number of actions
and the plausible action for a state.

Termination. The termination condition for the action se-
quence generation is the number of actions to be generated
in the input (default as 200) or the completion of all the
atomic actions relevant to the input goals.

Evaluation. (1) We will first perform automated evalua-
tions to check the plausibility of each action in the envi-
ronment, the plausibility of an action after a sequence of
actions that happened before this action, and the validity
of the system state after each action. (2) We will then add
more checks to verify if the generated data represents the
real learner activity state distributions and fits the identi-
fied HMMs. (3) We will further use human-expert evalua-
tion from our team to verify if the input state matches the
identified state and if the action sequence generated is rele-
vant to the input goals.

3.3 Current Work and Limitations
We have generated the initial goal dataset containing a list
of 58 plausible learner goals with associated atomic actions
and the execution order using the GPT 3.5-turbo model.



We have tried with 2 different prompt structures (explain-
ing our system components, roles, and set of actions) to
generate this dataset. We have tried zero-shot and one-shot
approaches for prompting. Based on our initial human eval-
uations, the generated data has many diverse concrete goals.
However, there is still a lack of enough abstract goals. We
are tuning our prompting style to generate more diverse and
abstract goals.

Based on this initial data, we also experimented with match-
ing the input goal to a relevant goal from the dataset using
BERT sentence embeddings and cosine similarity. Our man-
ual testing verified the efficiency of our method in finding a
similar goal from the dataset to an input goal. However,
this initial evaluation indicated that the order of the events
in the input goal is not very well considered in our matching
technique. For certain goal inputs, for example “Turn right
after speaking Hello” the matching algorithm could return
the goal that addresses these events in no specific order like
“Say hello and turn right”. We believe this might be because
of the smaller size of examples representing ordering in our
dataset. We plan to generate more data with explicit or-
dering of actions along with including action ordering in the
goal matching.

4. ADVICE SOUGHT
For this doctoral consortium, we would like advice regarding
the following topics:

1. How can we tune prompts to generate more diverse
goals from LLMs?

2. How can we enforce ordering in goal matching? Do you
have recommendations for understanding novel learner
goals based on the data generated from LLMs?

3. How can we efficiently evaluate the generated data by
our Simulated Students system? Are there any other
evaluation techniques you would like us to look at?

4. What general suggestions do you have for our design
and evaluation methods to build a Simulated Students
system to emulate learner activities?
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