
On Competition for Undergraduate Co-op Placements:
A Graph Mining Approach

Yuheng Jiang and Lukasz Golab
University of Waterloo, Canada

{y29jiang,lgolab}@uwaterloo.ca

ABSTRACT
We propose a graph mining methodology to analyze the relation-
ships among academic programs from the point of view of co-
operative education. The input consists of student - job interview
pairs, with each student labelled with his or her academic program.
From this input, we build a weighted directed graph, which we re-
fer to as a program graph, in which vertices correspond to academic
programs and edge weights denote the percentage of jobs that in-
terviewed at least one student from both programs. We show that
various properties of this graph have natural interpretations in terms
of the relationships among academic programs and competition for
co-op jobs. We also present a case study that illustrates the utility
of the proposed methodology.

1. INTRODUCTION
According to the World Association for Cooperative and Work-
integrated Education, 275 institutions from 37 countries have im-
plemented cooperative education (co-op) programs [17]. Co-op ex-
periences are vital because they supplement students’ classroom
skills and help them to gain practical experience.

We propose a graph mining methodology to analyze the relation-
ships and competition among academic programs in the context of
co-op. Our motivation is threefold. First, with academic institu-
tions introducing new programs in recent years [6, 15], it is often
unclear how one program differs from another. As a result, em-
ployers may not know which programs to advertise their jobs to
and students may not realize that they qualify for a job targeted to
a related program (e.g., Computer Science vs. Software Engineer-
ing). Understanding similarities among programs can lead to more
effective job and academic classification schemes and therefore can
help match job opportunities with qualified students. This analysis
can also help students choose programs of study that correspond
to their desired careers. Second, data from the co-op system may
be used to identify multi-disciplinary programs that enable their
students to obtain various types of jobs. This issue is becoming
increasingly important given the recent rise in popularity of multi-
disciplinary and well-rounded education [1, 2, 5, 10, 16]. Third,
analyzing co-op job data can reveal jobs that are exclusive to par-

ticular departments, and, conversely, departments whose students
compete for jobs with students from other departments. The uni-
versity can choose to attract more employers that offer jobs to pro-
grams facing strong competition. Thus, the problems we study in
this paper are critical to co-operative education from the student’s,
employer’s and institution’s perspective.

While some of these questions have been raised in prior work (de-
tails in Section 2), we propose a data-driven technique for answer-
ing them. Our input consists of student - job interview pairs, with
each student labelled with his or her academic program. We trans-
form this input to a graph, which we refer to as a program graph, in
which vertices correspond to academic programs and edge weights
denote the percentage of jobs that interviewed at least one student
from both programs. Thus, the larger the edge weight, the stronger
the relationship and competition between two programs.

Within the program graph, we are interested in vertices forming
clusters or communities, vertices that are connected to many such
clusters, and vertices that are strongly connected to their neigh-
bours. As we will show, these graph properties have natural inter-
pretations in the context of co-op. Graph clustering and community
detection determine groups of related programs whose students in-
terview for the same types of jobs; programs with connections to
multiple clusters are likely to be multi-disciplinary; and programs
with strong connections to their immediate neighbours face strong
competition for jobs.

2. RELATED WORK
The majority of related work qualitatively or statistically analyzed
co-op education through survey data with fewer than 100 entries.
To the best of our knowledge, the first research work that used a
large-scale data-driven methodology was our previous work [9].
We analyzed satisfaction with the co-op process using three years
of evaluation data (students’ evaluations of their employers and em-
ployers’ evaluations of students). We found that students received
better evaluations in their senior years, but they rated their first
employer the highest. We also found that senior students outper-
formed junior students in work placements abroad, and extended
work terms at the same employer (spanning more than one aca-
demic term) did not increase student satisfaction. In this paper, we
target a different problem of understanding the relationships among
academic programs.

In the context of academic programs, Wilson and other researchers
urged traditional academic disciplines to be updated to better re-
flect reality [6, 15]. Furthermore, Hesketh found that employers
have trouble advertising to specific programs and instead they ad-

Proceedings of the 9th International Conference on Educational Data Mining 394

vertise based on desired skillsets [8]. As we will show, clusters in
the program graph indicate similar programs and suggest related
programs that employers can advertise their jobs to. Additionally,
it was suggested that programs can be evaluated based on their stu-
dents’ ability to obtain jobs [7, 14], which is a question that can be
answered with the help of our methodology. Also, while the impor-
tance of multi-disciplinary education has been widely recognized
[1, 2, 5, 10, 16], we propose a data-driven methodology for analyz-
ing whether students from a particular academic program qualify
for different types of jobs.

3. METHODOLOGY
We are given a dataset corresponding to student - job interview
pairs, with each student labeled with his or her academic program
and each interview associated with a job ID. We propose a method-
ology that relies on transforming the student-job interview pairs to
an edge-weighted directed graphG = (V,E), with a set of vertices
V and a set of edges E. Vertices correspond to academic programs
and edges represent relationships among programs. Let eij be the
weight of the edge Eij from vertex vi to vj , and let Ji be the list of
distinct jobs that interviewed students from program vi. We define
eij as the fraction of jobs that interviewed at least one student from
both programs; i.e., the fraction of jobs in Ji that also appear in Jj :

eij =
|Ji ∩ Jj |
|Ji|

(1)

This can also be interpreted as a conditional probability that a job
interviewed at least one student from program vj given that it in-
terviewed at least one student from program vi.

The direction of edges is important. For a program node vi, an in-
coming edge weight from vj measures the fraction of jobs in Jj
that also interviewed at least one student from vi. Thus, a large
incoming edge weight of vi from vj means that most jobs inter-
viewing at least one student from vj also interviewed at least one
student from vi. Conversely, a large outgoing edge weight from vi
to vj means that most jobs interviewing at least one student from
vi also interviewed at least one student from the other program.

We give an example in Table 1, which corresponds to 4 jobs, 9 in-
terviews and 8 students from three programs (A, B and C). The job
lists for each program are: JA = {1, 2, 3}, JB = {1, 2}, and JC =
{2, 4}. The corresponding program graph is shown in Figure 1,
and the edges are colour-coded by the source vertex. The edge
weight from Program A to Program B is |{1, 2}|/|{1, 2, 3}| =
2/3 = 0.67, meaning that 67 percent of jobs that interviewed at
least one student from Program A also interviewed at least one stu-
dent from Program B. The edge weight from Program B to Program
A is |{1, 2}|/|{1, 2}| = 2/2 = 1, meaning that every job which
interviewed a student from program B also interviewed a student
from program A. Thus, the larger the edge weight, the stronger the
relationship and competition between two programs.

Our definition of edge weights assumes that a relationship between
two programs exists if at least one student from both programs in-
terviewed for the same job; if there are many such jobs, then the
edge weight will be larger.

Having explained how the program graph is constructed, we now
clarify how properties of the program graph are related to the types
and extent of relationships among academic programs in the con-
text of co-op jobs:

Table 1: Sample interview data
Student ID Program Name Job ID

1 A 1
2 C 2
3 B 1
3 B 2
4 B 1
5 A 2
6 A 3
7 C 2
8 C 4

Figure 1: An example of a program graph

• Clusters: Clusters in a graph represent closely connected
vertices. In our context, clusters represent related programs
whose students interview for (mostly) the same jobs.

• Outliers: Given a graph clustering, we define outliers as
vertices that have strong connections to other vertices from
multiple clusters (as opposed to “normal” vertices connected
mostly to other vertices within the same cluster). In our anal-
ysis, outliers correspond to multi-disciplinary programs: stu-
dents from those programs have interviews in common with
students from several different program clusters.

• Fan-out: (Weighted) fan-out measures the (weighted) num-
ber of outgoing edges of a vertex. In our context, weighted
fan-out corresponds to the competition that a program faces
from other programs. High weighted fan-out means that
most jobs interviewing at least one student from the given
program also interviewed students from other programs. As
we will explain shortly, we use a modified version of stan-
dard weighted fan-out that takes into account the fact that
our edge weights are defined in terms of set intersections (of
the job sets of different programs).

In the remainder of this section, we describe the graph algorithms
that may be used to identify program clusters, multi-disciplinary
programs and programs facing strong competition.

3.1 Finding Clusters of Similar Programs
We use two techniques to find clusters of similar programs: near-
clique finding and community detection.

The density of a graph (or subgraph) is the number of edges di-
vided by the maximum possible number of edges, i.e., |E|

|V |∗(|V |−1)
.

A clique is a group of vertices that are fully connected and therefore
have a density of one. A near-clique is a group of vertices where

Proceedings of the 9th International Conference on Educational Data Mining 395

the subgraph consisting of them and their edges has a density of
nearly one, i.e., a group of vertices that is nearly fully connected.
However, since our program graph is weighted and directed, we
want to find near-cliques with large edge weights. To do this, we
first remove all edges from the program graph except the five per-
cent with the largest edge weights. The resulting graph may leave
some vertices disconnected, while other pairs of vertices may only
have an incoming or an outgoing edge. Then, we remove edge di-
rections and simply retain an edge between two programs if there
is either an incoming or an outgoing edge. Finally, we return all
near-cliques from the resulting graph with density of at least 0.8.

In addition to identifying densely connected subgraphs via near-
clique finding, we use the Louvain Modularity algorithm [4] to
partition the vertices into disjoint clusters (communities), such that
vertices with the same cluster are densely connected and vertices
in different clusters are sparsely connected. This algorithm is in-
cluded in many graph mining tools such as Gephi [3] and aims to
maximize modularity, which compares the sum of the weights of
intra-cluster edges resulting from given clustering with that of a
randomly connected graph with the same number of edges [13].

Newman [12] introduced modularity for weighted undirected
graphs. We translate this metric to weighted directed graphs as
follows. Let ci be the community that a vertex vi belongs to,
and m =

∑
ij eij , i.e., the sum of all the edge weights in the

graph. The fraction of the edge weights that are intra-cluster is
1

m

∑
j eijδ(ci, cj), where δ(ci, cj) is equal to 1 if ci = cj (i.e.

vertices vi and vj belong to the same cluster) and 0 otherwise.

Let ki =
∑

j eij (i.e., the sum of the weights of the edges that
connect to vertex vi). Consider another graph in which the fan-
outs of all the vertices are the same but the edges are randomly
connected. In such a graph, the probability of an edge existing

between vertices vi and vj is
kikj
2m

. The modularity of a graph
clustering is defined as:

Q =
1

m

∑

i,j

(eij − kikj
m

)δ(ci, cj) (2)

Q = 0 means that the community detection result is no better than
random. The maximum value for Q is 1. Higher modularity indi-
cates more effective partitioning with more intra-cluster edges and
fewer inter-cluster edges.

The Louvain Modularity method is iterative and includes two
phases. In the first phase, each vertex starts in a different commu-
nity. Then, for each vertex vi, we compute the gain in modularity
if vi is moved to the community that its neighbour (vj) belongs to.
If the gain is positive, the change happens; otherwise vi remains
in its original community. This process is repeated iteratively and
sequentially until no further improvements can be made. The out-
come of the first phase is only a local optimum of modularity since
the order of processing of the vertices will affect the result. In the
second phase, a new graph is created such that the vertices are the
communities obtained in the first phase, and edge weights are the
sums of edge weights between vertices in the two communities. We
reapply the process in the first phase on this new graph. The algo-
rithm stops when maximum modularity is reached. To account for
the effect of order, we run this algorithm multiple times and keep
the result with the highest modularity.

Figure 2: Direct competitors of Medicinal Chemistry, colour-
coded by clusters

One characteristic of this algorithm is that it avoids creating small
clusters. Lambiotte et al. [11] add a resolution parameter t to con-
trol the number of clusters. The new modularity definition is shown
in Equation 3. The default t value is 1; smaller values of t lead to
more and smaller communities.

Qnew(t) = (1− t) +
1

m

∑

i,j

(eijt− kikj
m

)δ(ci, cj) (3)

3.2 Finding Multi-Disciplinary Programs
To find multi-disciplinary programs, we start with the clus-
ters/communities obtained by the Louvain Modularity algorithm.
Intuitively, if an academic program has strong connections to other
programs from multiple clusters (each of which corresponds to dif-
ferent types of jobs), it may be multi-disciplinary.

For each program, we propose a multi-disciplinary score as fol-
lows. For each cluster ci identified by the Louvain Modularity al-
gorithm, let pi be the fraction of the total weight of the outgoing
edges from the given program to the programs only in ci. Then, for
a given program, we compute the entropy of the distribution of edge
weights among different communities simply as

∑
i−pi log2 pi.

High entropy means that the given program has strong links to pro-
grams in multiple clusters and therefore may be multi-disciplinary.

We illustrate this concept with an example. Suppose that stu-
dents in the Medicinal Chemistry program had interviews in com-
mon with students from eight other programs belonging to four
clusters, labeled red, blue, purple, and green, as shown in Fig-
ure 2, with vertices colour-coded by their clusters. Only the out-
going edges from Medicinal Chemistry are relevant since they
represent the percentage of jobs from JMedicinalChemistry that
also interviews students from its neighbour programs. The sum
of all out-going edge weights of Medicinal Chemistry is 3.25.
pred = (

∑
i∈red cluster eMedicinalChemistry,i)/3.25 = (0.75 +

0.75 + 0.25)/3.25 = 0.54, which is the sum of weights of
edges from Medicinal Chemistry to the programs in the red clus-
ter. Similarly, pblue = 0.23, pgreen = 0.15, and ppurple =
0.08. Thus, the multidisciplinary score of Medicinal Chemistry
is −pred log2 pred − pblue log2 pblue − ppurple log2 ppurple −
pgreen log2 pgreen = 1.67.

3.3 Finding Programs Facing Competition
We define the extent of competition that a program faces using
a “set fan-out" metric. We want to compute the fraction of jobs
that interviewed students from the given program which also in-
terviewed at least one student from another program. For a given
vertex (program) vi, we define:

Proceedings of the 9th International Conference on Educational Data Mining 396

Set Fan Outi =
| ∪j 6=i (Ji ∩ Jj)|

|Ji|
(4)

A set fan-out of zero means that all the jobs that interviewed at
least one student from program vi only interviewed students from
vi and no other program. Students from such a program may have
specialized skills that students from other programs do not have.
A set fan-out of one means that every job that interviewed at least
one student from program vi also interviewed at least one student
from another program. In other words, there were no jobs that ex-
clusively interviewed students from vi and therefore students from
vi may be facing strong competition for jobs.

Returning to Table 1, JA = {1, 2, 3}, JB = {1, 2},
and JC = {2, 4}. For Program A, its set fan-out is
|(JA ∩ JB) ∪ (JA ∩ JC)|

|JA|
=
|{1, 2}|
|{1, 2, 3}| =

2

3
= 0.67. It means

that students from Program A competed with students from other
programs in 67 percent of their jobs. 33 percent of jobs that inter-
viewed students from Program A did not interview students from
other programs. The set fan-out for Program B is 1 and for Program
C it is 0.5.

4. CASE STUDY
We now describe a case study that illustrates the utility of the pro-
posed methodology. To carry out the analysis, we used the Gephi
toolkit [3] which includes the Louvain Modularity algorithm. We
used data from a large Canadian university including all interviews
taking place in summer 2014, for co-op jobs taking place in Fall
2014. For each student - interview pair, the dataset includes the
student’s academic program and year, and job information such as
the company name, job title, and targeted programs and academic
years. The dataset consists of 4,194 students from 93 academic
programs, 2,890 jobs and 16,855 interviews. On average, each job
interviewed 5.8 students and each student had 4 interviews.

This academic institution has six faculties, each comprised of a
number of academic programs: Science (programs include Physics
and Earth Sciences), Mathematics (programs include Computer
Science and Actuarial Science), Engineering (programs include
Electrical, Mechanical, Civil, etc.), Arts (programs include Eco-
nomics, Psychology and Sociology), Environment (programs in-
clude Planning and Geomatics) and Applied Health Science (AHS)
(programs include Kinesiology and Recreation and Leisure Stud-
ies). All Engineering programs and several programs from other
faculties (mainly Mathematics) have mandatory co-op education;
other programs have optional co-op. As a result, most of the stu-
dents and jobs in our dataset are from Engineering and Mathemat-
ics.

Rather than using all available data, we build the program graph
using only the interviews of senior students (in their third and
fourth academic years). Junior-level jobs tend to be less special-
ized, meaning that (junior) students from many different depart-
ments may qualify for an interview. In particular, we noticed that
entry-level computer programming jobs interview students from
many programs, including those outside computing. By focusing
on senior students, we avoid generating edges in the program graph
that correspond to junior-level jobs and may not truly indicate a
relationship between programs. The resulting program graph con-
tains 88 vertices (corresponding to programs that have at least two
senior students in co-op) and 1,315 pairs of directed edges.

Figure 3: Vertices and edges participating in near-cliques

The program graph is a single connected component, i.e., there ex-
ists a path from every vertex to another. Its density is 0.34, meaning
that one third of all possible program pairs had at least one inter-
view in common. On average, the length of the shortest path be-
tween any two vertices is 1.7 and the diameter of the graph (i.e.,
the maximum length of any shortest path between two vertices) is
three. The number of edges per vertex ranges from 4 to 66, with an
average of 30.

4.1 Finding Clusters of Similar Programs
4.1.1 Near-Clique Finding

We begin by identifying near-cliques in the program graph (but
considering only the five percent of edges with the largest weights,
as described in Section 3). Figure 3 plots a subgraph of the program
graph containing only the 46 vertices and 104 edges (in the top 5
percent of edge weights) that participate in the 25 near-cliques that
we found. Three groups of programs appear to participate in the
near-cliques, and we use a different colour for each. The larger the
edge weight, the thicker the edge.

The red group at the top contains programs related to computing
and maths. There is one near-clique with Software Engineering,
Computer Engineering, Computer Science, Systems Design Engi-
neering and Mechatronics Engineering. This suggests that Systems
Design and Mechatronics students compete (interview) for soft-
ware and programming jobs with students from core computing
programs such as Computer Science. There are also two smaller
near-cliques corresponding to Statistics/Actuarial Science and Ac-
counting/Financial Analysis. Additionally, Pure Mathematics is
connected to both of these; in fact Pure Mathematics students had
interviews in common with students from 18 other programs. This
suggests that Pure Mathematics students also interview for jobs in
statistics, finance and business. Upon further inspection, we found
that most such jobs were in financial trading.

The blue group of vertices in the middle includes two near-cliques:
one with Chemistry-related programs and one with Earth Science
and Environment-related programs. Based on these observations,
the university may choose to either merge some of these related
programs or redesign them to remove some of the overlap.

The green group at the bottom shows interesting connections. For
instance, Economics seems strongly connected to Science & Busi-
ness and Environment & Business, suggesting that these joint pro-

Proceedings of the 9th International Conference on Educational Data Mining 397

grams focus more on business than science (otherwise they would
be connected with programs such as Chemistry and Environmental
Engineering). Furthermore, there is a near-clique with seemingly
unrelated programs: Sociology, Legal Studies, English-Literature
& Rhetoric and Environment & Business; the first three are in the
faculty of Arts while the last one is in the faculty of Environment.
Upon further inspection, we found that the jobs these programs
competed for were mainly in marketing and communications.

4.1.2 Community Detection
Next, we run the Louvain Modularity algorithm with different val-
ues of the resolution parameter to obtain a partitioning of the ver-
tices into different numbers of communities, from 2 to 7. For exam-
ple, Figure 4 shows the 7 communities we found, with each com-
munity in a different colour. For readability, we only include the
edges in the top 5 percent of largest weights. Notice that Figure 3
is a subgraph of Figure 4, so all the near-cliques identified there are
also visible here.

With these seven clusters, we obtain a partitioning into Engineer-
ing/Computing, Math/Finance, Natural Sciences, Social Sciences,
Science &Business, Environment, and Health Sciences. Note that
some engineering programs such as Chemical are placed in the
Natural Sciences cluster and others such as Civil and Geological
are placed in the Environment cluster. With only four clusters (il-
lustration omitted for brevity), we obtain Engineering/Computing,
Math/Finance, Natural Science/Environment, and Social/Health
Science. With only two clusters (illustration omitted for brevity),
we distinguish between Math/Engineering and Natural/Social Sci-
ence programs.

4.2 Finding Multi-Disciplinary Programs
Recall that our methodology for identifying multi-disciplinary pro-
grams requires a clustering; then, for each program, we compute
the entropy of its edge weight distribution across different clus-
ters. We use the seven clusters from Figure 4 and obtained en-
tropy values between 0.64 and 1.89. The top five multi-disciplinary
programs (highest entropy) are: Science & Business/Biochemistry,
English Literary Studies, Science & Business/Environmental Sci-
ence, Biology, and Science & Business. The top five least multi-
disciplinary programs are: Geological Engineering, Software Engi-
neering, French, Mechatronics Engineering and Civil Engineering.
Not surprisingly, joint programs of the form Science & Business
were identified as multi-disciplinary while specialized engineering
programs were not.

4.3 Finding Programs Facing Competition
We now search for programs with high set fan-out, i.e., those with
few jobs that interviewed students only from that particular pro-
gram. We found that for about half the programs, over 90 percent
of the jobs that interviewed a student from a particular program
also interviewed at least one student from another program. Thus,
competition for jobs among academic programs appears relatively
high. In particular, 16 programs, including Business & Mathemat-
ics, did not have any jobs that interviewed only their students (the
jobs for which these students interviewed were computing-related
or financial). Most of these 16 programs were small (only 3-4 se-
nior co-op students). There were few jobs that specifically target
these programs, so students from these programs had to interview
for jobs advertised to other programs.

On the other hand, there were 8 programs where more than 30 per-
cent of the jobs that interviewed at least one of their students did not

Figure 5: Word cloud of job titles of 70 Civil Engineering jobs
that only interviewed students from Civil Engineering

Figure 6: Word cloud of job titles of 85 Civil Engineering jobs
that also interviewed students from other programs

interview students from any other program. They are Mathematical
Studies/Business, Environmental Science - Geoscience, Informa-
tion Technology Management, Accounting & Financial Manage-
ment, Kinesiology, Chemical Engineering, Mechanical Engineer-
ing, and Civil Engineering. Upon inspection of the 70 jobs that
interviewed only Civil Engineering students, we found that the job
titles reflected expertise that is specific to this program, such as
“structural”, “field inspector”, “bridge”, “traffic” and “transporta-
tion” (see the word cloud in Figure 5). However, the remaining 85
jobs that interviewed Civil Engineering students also interviewed
students from other programs, mostly other engineering programs
such as Environmental, Mechanical and Geological Engineering.
We show a word cloud of these job titles in Figure 6; notice that it
includes more general keywords as compared to those in Figure 5.
Thus, it appears that there may not be enough specialized jobs for
programs such as Civil Engineering and some students within such
programs compete for a broader set of jobs.

5. CONCLUSIONS
We presented a data-driven solution towards improving the co-
operative education process. We observed that academic programs
are typically used by students and employers to advertise and
search for jobs, but it is not always clear how one program dif-
fers from another, especially given that universities have recently
been creating new programs. In response to this problem, we
developed a methodology to characterize the relationships among
academic programs with respect to the job interviews obtained by
students from these programs. The insight behind the methodol-
ogy was to transform co-op interview data into a program graph,
which revealed that students from certain programs interview for
the same jobs as those from other programs. We proposed graph
analyses such as finding communities, finding vertices connected
to many communities, and finding vertices strongly connected to
their neighbours to describe the program relationships.

Proceedings of the 9th International Conference on Educational Data Mining 398

Figure 4: Clustering of the program graph into seven communities

We applied the proposed methodology on a large co-op data set
from a major Canadian university. Our findings and their signifi-
cance may be summarized as follows.

The clustering and community detection results (Section 4.1) corre-
spond to job categories and academic specializations, which are not
always evident from the University’s academic structure. This sug-
gests a job classification hierarchy to help advertise jobs to groups
of related programs. Our results can also help students plan their
academic and employment careers.

In Section 4.2, we identified multi-disciplinary programs which
have strong connections to multiple clusters. These results can help
students select programs that will give them broad skills and job
qualifications, and can help institutions confirm that programs de-
signed to be multi-disciplinary are producing students who qualify
(i.e., are able to obtain interviews) for various types of jobs.

In Section 4.3, we identified programs where there were no jobs
that only interviewed students from that particular program. That
is, students from that program always competed for jobs with stu-
dents from other programs. The university may wish to attract more
employers that offer jobs to these under-represented programs.

6. REFERENCES
[1] R. Barnett. Supercomplexity and the curriculum. Studies in Higher

Education, 25(3):255–265, 2000.
[2] R. Barnett. Learning for an unknown future. Higher Education

Research & Development, 31(1):65–77, 2012.
[3] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source

software for exploring and manipulating networks. In Proc. of the
International AAAI Conference on Weblogs and Social Media, 2009.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical

Mechanics: Theory and Experiment, 2008(10):P10008, 2008.
[5] M. Borrego and J. Bernhard. The emergence of engineering

education research as an internationally connected field of inquiry.
Journal of Engineering Education, 100(1):14–47, 2011.

[6] E. El-Khawas. Higher education re-formed: Peter scott (ed.): Falmer
press, London, 2000. Higher Education Policy, 14(1):93–95, 2001.

[7] Z. Fadeeva, Y. Mochizuki, K. Brundiers, A. Wiek, and C. L.
Redman. Real-world learning opportunities in sustainability: from
classroom into the real world. International Journal of Sustainability
in Higher Education, 11(4):308–324, 2010.

[8] A. J. Hesketh. Recruiting an elite? employers’ perceptions of
graduate education and training. Journal of Education and Work,
13(3):245–271, 2000.

[9] Y. Jiang, W. Y. S. Lee, and L. Golab. Analyzing student and
employer satisfaction with cooperative education through multiple
data sources. Asia-Pacific Journal of Cooperative Education,
16(4):225-240, 2015.

[10] D. Kember, A. Ho, and C. Hong. The importance of establishing
relevance in motivating student learning. Active Learning in Higher
Ed., 9(3):249–263, 2008.

[11] R. Lambiotte, J.-C. Delvenne, and M. Barahona. Laplacian
dynamics and multiscale modular structure in networks. arXiv
preprint 0812.1770, 2008.

[12] M. E. Newman. Analysis of weighted networks. Physical Review E,
70(5):056131, 2004.

[13] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review E, 69:026113, Feb 2004.

[14] A. Wiek, L. Withycombe, and C. L. Redman. Key competencies in
sustainability: a reference framework for academic program
development. Sustainability Science, 6(2):203–218, 2011.

[15] A. Wilson. Strategy and management for university development. In
Higher Education Re-Formed, Falmer Press, pp. 29-44, 2000.

[16] A. Wilson. Knowledge power: interdisciplinary education for a
complex world. Routledge, 2010.

[17] World Association for Cooperative & Work-integrated Education
(WACE). Accessed on 25 Feb 2016, at
www.waceinc.org/global_institutions.html .

Proceedings of the 9th International Conference on Educational Data Mining 399

