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ABSTRACT 
We hypothesize that there are two basic ways that a user model 
can perform better than another: 1.) having test data averages that 
match the prediction values (we call this the coherence of the 
model) and 2.) having fewer instances near the mean prediction 
(we call this the differentiation of the model).  There are several 
common metrics used to determine the goodness of user models; 
these metrics conflate coherence and differentiation.  We believe 
that user model analyses will be improved if authors report the 
differentiation, as well as to include an ordering metric (e.g. 
AUC/A’ or R2) and an error measurement (Efron’s R2, RMSE or 
MAE).  Lastly, we share a simplified spreadsheet that enables 
readers to examine these effects on their own datasets and models. 

1. INTRODUCTION AND BACKGROUND 
One of the goals of many in the online educational community is 
to more accurately predict whether a student will get the next 
question correct.  In order to predict student responses, algorithms 
such as Knowledge Tracing [2], Performance Factors Analysis 
[6], and tabling methods [10] etc. have been developed.  (See [3] 
for a thorough review of various user models.)  Looking at only 
papers presented at EDM 2014, we find more than 6 new models 
or modifications proposed in the full papers alone [14].  Common 
metrics used to determine when a model is better than another 
include AUC/A’, RMSE, MAE, and R-squared.  There has been 
some work done (e.g. [1, 4]) looking into what metrics to use and 
how to interpret them [5, 11].    
One can argue that current models predict the probability that a 
student-problem-instance (hereafter “instance”) will be correct.  
Models such as Knowledge-Tracing (“KT”), Performance Factors 
Analysis (“PFA”), and their derivatives create a theoretically 
continuous range of predictions from 0.00 to 1.00.  Even tabling 
models (eg. [10]) may predict a (near) continuous range of values 
through regressions.  We argue that there are two properties of a 
model that will make it more accurate: 1.) How well a prediction 
matches the aggregate test-data, and 2.) How well the model can 
make predictions away from the mean.   

1.1 Our Definitions 
1.1.1 “Coherence” 
Given a large enough data-set, we argue that an accurate model’s 
predictions should match the test data average for a given group 
of instances.  For example, if a model were to identify a group of 
instances and give that group a predicted value of 0.25, we argue 
that the model is most accurate when exactly one out of every four 
students in that condition gets the correct answer.  If the model 
predicts 0.25, but only one out of every ten gets it right, the 
model’s “scores” by most metrics will be improved, however, it is 
not as accurate as a similar model that groups that same instances 
together, but predicts 0.10.   
1.1.2 “Differentiation” 
A naive model of student knowledge might use the average score 
from a training dataset and predict with that probability for all 

instances.  Arguably, more complicated user models seek to find 
reasons not to do this.  The more features that a model can 
incorporate to move predictions away from the mean value, the 
better a model is at not making the mean prediction.  We use the 
term “differentiation” in much the same way as “distribution”, but 
do so to avoid possible confusion with the distribution of the 
training data. 

2. METHODS 
In order to visualize the impact of differentiation and coherence 
on the various metrics, we generate not synthetic data, but rather 
synthetic model outputs.  To examine the effect of differentiation, 
a spreadsheet was created that allows the user to input prediction 
value, test group average, and number of instances within that 
group, for up to eleven groups.  The spreadsheet then calculates 
values for AUC, A’, R2, Efron’s R2, RMSE, and MAE.  A 
publicly shared copy of the spreadsheet can be found at: 
http://tinyurl.com/kznthk7.  In addition to using synthetic data, the 
results of three models fitted to real data are explored. 

3. RESULTS AND DISCUSSION 
Figure 1 is a plot of the six metrics as a differentiation changes 
from an exceptionally steep “V” to flat to increasingly steep “A”.  
All “models” have perfect coherence.  E.g., when the model 
predicts 0.20, exactly 2/10 students are correct.  From Figure 1, 
we can see that differentiation plays a role in user model “scores”. 

To see if these ideas have merit on real data, we analyze three 
different models fitted to the same (~400K instance) dataset.  In 
another paper [16], we have submitted a new user model.  In that 
paper, the new model, called “SuperBins” (SB), is compared to 
Knowledge Tracing and Performance Factors Analysis, and found 
to be “better”, according to RMSE, R2, and AUC.  If we create a 
frequency table of 11 groups, we will certainly lose precision, but 
the analysis is useful.  To do so, we average the prediction values 
(according to their frequency) across eleven equal lengths of 
prediction values of the data set; we do the same for the test data 

 
Figure 1: Chart of synthetic model outcomes showing the basic 
effect of changing differentiation. 

http://tinyurl.com/kznthk7


averages.  E.g.., the average prediction value from 0 to 0.0909, as 
weighted by the frequency of each prediction was found to be 
0.08 for the SuperBins model.  There were no predictions in that 
range for KT.  There were nine for PFA (eight were right), with 
an average prediction value of 0.01.   
The analysis of coherence shows that, from 0.60 and up, all three 
models are reasonably accurate; i.e., the predictions closely match 
the test data averages.  However, KT has over-predicted in the 
three largest of the 6 groups below 0.60.  PFA appears to be 
reasonably consistent; however, one could argue that PFA 
consistently under-predicts in this range.  Others [7] have 
previously reported on KT over-reporting.  With this analysis, we 
can say that PFA has done the worst of the three at moving 
instances away from the mean.  The major reason why SB scores 
so well against the other two could be its ability to bring more 
predictions below 0.50, while maintaining coherence.   
The easiest way to measure the differentiation of the prediction 
values might be to report the standard deviation of prediction 
values.  As a way to compare to the “ideal” (for that dataset), we 
could report either the standard deviation of the test data (0.439), 
or the standard deviation of the training data (0.440). 

4. CONCLUSION 
There are times when the metrics “scoring” user models disagree; 
in addition, it may be helpful for a deeper comparison.   
We conclude that, if we are to accurately compare knowledge 
predicting models to each other, we need to look at new metrics, 
in addition to a mix of old metrics.  We do not believe that we are 
proposing the “ultimate” single metric that will definitively state 
which model is “better”.  We are stating that we believe model 
comparison is improved when it contains (AUC or A’, or R2), and 
(Efron’s R2, RMSE, or MAE) and the standard deviation of the 
predictions.  A more thorough comparison might also include 
coherence-frequency table analysis in an attempt to identify 
regions of habitual over or under prediction. 
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Table 1: A coherence-frequency table of results from three knowledge models trained and 
tested on the same real dataset (80/20).  Model results have been averaged across 11 
intervals for demonstration purposes.  The prediction and test values are the weighted 
averages of each model within the ranges on the left. 
 SB  KT  PFA 
Range pred test n  pred test n  pred test n 
0.0000 - 0.0909 0.08 0.00 5  n/a n/a 0  0.01 0.78 9 
0.0910 - 0.1818 0.14 0.13 516  0.16 0.75 4  0.13 0.53 17 
0.1819 - 0.2727 0.22 0.23 892  0.24 0.30 64  0.23 0.46 56 
0.2728 - 0.3636 0.31 0.32 1829  0.33 0.28 704  0.31 0.49 168 
0.3637 - 0.4545 0.41 0.41 3235  0.40 0.36 2565  0.41 0.42 643 
0.4546 - 0.5454 0.50 0.51 4878  0.51 0.48 6978  0.50 0.49 3539 
0.5455 - 0.6363 0.60 0.60 6355  0.60 0.61 8776  0.61 0.59 7376 
0.6364 - 0.7272 0.69 0.69 9772  0.69 0.71 12149  0.70 0.70 25819 
0.7273 - 0.8181 0.79 0.79 25296  0.78 0.78 18518  0.77 0.78 25580 
0.8182 - 0.9090 0.86 0.87 23347  0.87 0.85 23600  0.87 0.87 13811 
0.9091 - 1.0000 0.97 0.97 3074  0.95 0.95 5841  0.97 0.96 2181 

Metrics 
AUC 
0.728 

R2  
0.145 

RMSE 
0.406 

 AUC 
0.710 

R2  
0.115 

RMSE 
0.413 

 AUC 
0.653 

R2 
0.058  

RMSE 
0.426 

 stdev (pred): 0.166  stdev(pred): 0.147  stdev(pred): 0.107 
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