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ABSTRACT

Additive Factors Model (AFM) and Performance Factors
Analysis (PFA) are two popular models of student learning
that employ logistic regression to estimate parameters and
predict performance. This is in contrast to Bayesian Knowl-
edge Tracing (BKT) which uses a Hidden Markov Model
formalism. While all three models tend to make similar
predictions, they differ in their parameterization of student
learning. One key difference is that BKT has parameters
for the slipping rates of learned skills, whereas the logis-
tic models do not. Thus, the logistic models assume that
as students get more practice their probability of correctly
answering monotonically converges to 100%, whereas BKT
allows monotonic convergence to lower probabilities. In this
paper, we present a novel modification of logistic regression
that allows it to account for situations resulting in false neg-
ative student actions (e.g., slipping on known skills). We
apply this new regression approach to create two new meth-
ods AFM+Slip and PFA+Slip and compare the performance
of these new models to traditional AFM, PFA, and BKT.
We find that across five datasets the new slipping models
have the highest accuracy on 10-fold cross validation. We
also find evidence that the slip parameters better enable the
logistic models to fit steep learning rates, rather than better
fitting the tail of learning curves as we expected. Lastly, we
explore the use of high slip values as an indicator of skills
that might benefit from skill label refinement. We find that
after refining the skill model for one dataset using this ap-
proach the traditional model fit improved to be on par with
the slip model.
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1. INTRODUCTION

Statistical models of student learning make it possible for In-
telligent Tutoring Systems [18] to be adaptive. These models
estimate students’ latent skill knowledge, so that tutors can
use these estimates to intelligently select problems that give
students more practice on skills that need it. Prior work has
shown that even minor improvements in the predictive fit of
latent knowledge models can result in less “wasted” student
time, with more time on effective practice [22].
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Two popular models of student learning are the Additive
Factors Model (AFM) [4] and Performance Factors Analy-
sis (PFA) [16]. Both are extensions of traditional Item Re-
sponse Theory models [8]. While the two models differ in
their parameterization of student learning, they both utilize
logistic regression to estimate parameters and predict stu-
dent performance. These models stand in contrast to other
popular approaches like Bayesian Knowledge Tracing (BKT)
[7], which uses Hidden Markov Modeling.

The BKT model is used both for “online” knowledge estima-
tion within Intelligent Tutoring Systems (e.g., in Carnegie
Learning’s Cognitive tutor) to adaptively selecting practice
items and for “offline” educational data modeling. The logis-
tic models, on the other hand, have mainly been used in the
context of offline data modeling. For example, DataShop,
the largest open repository of educational data [12], uses
AFM to fit student performance within existing datasets and
to generate predicted learning curves. Data-driven cognitive
task analyses, i.e., discovering and testing new mappings of
tutor items to skills (or knowledge components), have used
AFM as the core statistical model [17]. Novel knowledge
component models can be discovered, evaluated in conjunc-
tion with AFM as a statistical model, validated on novel
datasets [14], and used to guide tutor redesign efforts [13].

Despite the success of approaches like AFM, its lack of slip
parameters has been emphasized as a key reason for favoring
knowledge tracing over logistic models [10]. But knowledge
tracing models tend to suffer from identifiability problems [1,
2]; e.g., the same performance data can be fit equally well
by different parameters values, with different implications
for system behavior. Furthermore, the actual effect of slip
parameters on model predictions is complicated. The guess
and slip parameters in BKT serve the dual purpose of mod-
eling both noise, and the upper and lower bounds, in student
performance. Without slip parameters, if a student gets an
answer wrong, then BKT must assume that the student has
not yet learned the skill. In contrast, the logistic models just
model noise in the observations, so as long as the average
student success rate converges to 100% then both models
should perform similarly (assuming all other parameters are
comparable across models). These approaches should only
differ in situations where student performance converges to
lower probabilities at higher opportunities; i.e., where false
negatives such as slipping are actually occurring.



To investigate false negative phenomena, we augmented the
logistic regression formalism to support slipping parameters.
Using this new approach, which we call Bounded Logistic
Regression, we produce two new student learning models:
Additive Factors Model + Slip (AFM+Slip) and Perfor-
mance Factors Analysis + Slip (PFA+Slip). These models
are identical to their traditional counterparts but have addi-
tional parameters to model the false negative rates for each
skill. We compare these models to their traditional coun-
terparts and to BKT on five datasets across the domains
of Geometry, Equation Solving, Writing, and Number Line
Estimation. In all cases, the slip models have higher predic-
tive accuracy (based on 10-fold cross validation) than their
traditional counterparts.

We then move beyond comparing the predictive accuracies
of the models to investigate how these parameters affect the
predictions of the models and why these models are more
accurate. Our analyses suggest that slipping parameters are
not used to capture actual student 7slipping” behavior (i.e.,
non-zero base rates for true student errors) but, rather, make
the logistic models more flexible and allow better modeling
of steeper learning rates while still predicting performance
accurately at high opportunity counts (in the learning curve
tail).

Lastly, we use AFM+Slip to perform data-driven refinement
of the knowledge component (KC) model for a Geometry
dataset. We identified a KC with a high false negative, or
slip, rate and searched for ways to refine it. Using domain
expertise, we refined the underlying KC model and showed
that the traditional model (AFM) with the new KC model
performed as well as the comparable slip model (AFM+Slip)
did with the original KC model. This suggests that slip
parameters allow the model to compensate for, and identify,
an underspecified KC model.

2. STATISTICAL MODELS OF LEARNING
2.1 Logistic Models

The models in this class use logistic regression to estimate
student and item parameters and to predict student perfor-
mance. Thus, they model the probability that a student will
get an step ¢ correct using the following logistic function:
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where z; is some linear function of student and item param-
eters for step 7. The likelihood function for these models has
been shown to be convex (i.e., no local maximums), so opti-
mal parameter values can be efficiently computed and issues
of identifiability only occur when there are limited amounts
of data for each parameter. There are many possible logistic
student learning models; in fact, most Item Response The-
ory models are in this class. For this paper, we will focus on
two popular models in the educational data mining commu-
nity: Additive Factors Model [4] and Performance Factors
Analysis [16].

2.1.1 Additive Factors Model

This model utilizes individual parameters for each student’s
baseline ability level, each knowledge component’s baseline
difficulty, and the learning rate for each knowledge com-

ponent (i.e., how much improvement occurs with each addi-
tional practice opportunity). The standard equation for this
model is shown here:

Zi =  Ostudent(i) + Z
kEKCs(i)

(Br + vk x opp(k, 1))

where Qg¢ydent(i) represents the prior knowledge of the stu-
dent performing step i, the 8s and s represents the diffi-
culty and learning rate of the KCs needed to solve step 1,
and opp(k, i) represents the number of prior opportunities a
student has had to practice skill k before step i. In the tra-
ditional formulation, the learning rates (s) are bounded to
be positive, so practicing KCs never decreases performance.
To prevent the model from overfitting, the student param-
eters (as) are typically Lo regularized; i.e., they are given
a normal prior with mean 0. Regularization decreases the
model fit to the training data (i.e., the log-likelihood, AIC,
and BIC) but improves the predictive accuracy on unseen
data. Thus, when comparing regularized models to other
approaches it should primarily be compared on measures
that use held out data, such as cross validation.

2.1.2  Performance Factors Analysis

There are two key differences between this model and AFM.
First, PFA does not have individual student parameters [16]
(later variants have explored the addition of student param-
eters [6], but we base our current analysis on the original
formulation). This usually substantially reduces the number
of parameters of the model relative to AFM, particularly in
datasets with a large number of unique students. Second,
the model takes into account students’ actual performance
(not just opportunities completed) by splitting the learning
rate for each skill into two learning rates: a rate for suc-
cessful practice and a rate for unsuccessful practice. The
standard equation based on these changes is the following:

v = 3

keKCs(i)

(Br + yrsuccess(i, k) + pi failure(i, k))

where the s represent the difficulty of the KCs, s and ps
represent the learning rates for successful and unsuccessful
practice on the KCs, success(i, k) represents the number of
successful applications of a skill k for the given student prior
to step ¢, and failure(i, k) represents the number of unsuc-
cessful applications of a skill k for the given student prior to
step ¢. Similar to AFM it is typical to restrict the learning
rates (i.e., ys and ps) to be positive [9]. One complication
when comparing this model to other approaches using held
out data (i.e., cross validation) is that the success and failure
counts potentially contain additional information about the
test data (i.e., performance on held out practice opportuni-
ties). Thus, we argue that comparing AFM to PFA using
cross validation is usually not a fair comparison. Bearing
this in mind, in the current analysis we were more interested
in comparing AFM+Slip and PFA+Slip to their respective
baseline models than to each other. To this end, we uti-
lized cross validation as the primary measure of predictive
accuracy for reasons previously discussed.

2.2 Bayesian Knowledge Tracing

There are many different models in the knowledge tracing
family [10], but for this paper we focus on traditional 4-
parameter BKT [7]. In contrast to the logistic approaches,



BKT utilizes a Hidden Markov Model to estimate latent
parameters and predict student performance. This model
has four parameters for each skill: the initial probability
that the skill is known p(Lo), the probability that the skill
will transition from an unlearned to a learned state p(T),
the probability of an error given that the skill is learned
p(Slip), and the probability of a success when the skill is
not learned p(Guess). Unlike the logistic models, the esti-
mation of these parameters can sometimes be difficult due
to issues of identifiability [2] (e.g., there are many parameter
values that yield the same likelihood) so these parameters
are typically bounded to be within reasonable ranges; e.g.,
guess is typically bounded to be between 0 and 0.3 and slip
is bounded to be between 0 and 0.1 [1]. Prior research has
produced toolkits that can efficiently estimate these param-
eters using different approaches. For the comparisons in this
paper we use the toolkit created by Yudelson et al. [23] and
we use the gradient descent method.

One of the core differences between the logistic models and
BKT is how they parameterize false negative student actions
(i.e., slipping behavior). The logistic models do not have
slip parameters and so they model student success as con-
verging monotonically to 100% success (i.e., learning rates
are bounded to be positive). In contrast, the BKT model
explicitly models false negatives and allows monotonic con-
vergence (under the typical assumption that the probability
of forgetting is zero) to lower success rates. The slip param-
eters in BKT also serve the purpose of accounting for noise
in student performance, and it is unclear whether these pa-
rameters account for true slipping behavior (i.e., non-zero
base rate error) or just general noise in the student actions.
Since the logistic models can already handle noise in the
data, it remains to be seen what would happen if slip pa-
rameters were added to these models. That is the focus of
this papers’ investigation.

3. BOUNDED LOGISTIC REGRESSION

There is no trivial approach to incorporating explicit slip pa-
rameters into the logistic models; e.g., the prediction prob-
ability cannot be bounded by an additional linear term to
the logistic function. In order to add these parameters we
modified the underlying logistic model to have the following
form:

1 1
X
Ite s = 1+4e =

pi =

where z; is the same as that used in standard logistic re-
gression and s; is a linear function of the parameters that
impose an upper bound on the success probability for the
step i. For modeling a slip rate for each skill we use the
following equation:

S = T+ Z 5k

keKCs(i)

where 7 is the parameter corresponding to the average slip
rate across all items and students and Jj, is the change in the
average slip rate for each skill k. We also apply an Ly regu-
larization to the 0 parameters to prevent overfitting. To fit
the parameters we used the sequential quadratic program-
ming package in Octave, which uses an approach similar to
Newton-Raphson but properly accounts for parameter con-

straints (e.g., positive learning rates). For details on param-
eter estimation see Appendix A.

This formulation is a generalization of Item Response The-
ory approaches that model item slip (e.g., [21]). In particu-
lar, it supports slipping with multiple KC labels per an item
by using a logistic function to map the sum of slip param-
eters to a value between 0 and 1. For items with a single

KC label, the He%% term reduces to the slip probability

for that KC. For multi-KC items, this term models slipping
as the linear combination of the individual KC slipping pa-
rameters in logit space. This approach mirrors that taken
by AFM and PFA for modeling KC difficulty and learning
rates in situations with multiple KC labels. In these situ-
ations, prior work has shown that the logit approach gives
a good approximations of both conjunctive and disjunctive
KC behavior [4].

During early model exploration we used Markov Chain Monte
Carlo methods to compare this formulation with a more
complex formulation that had parameters for both guess-
ing and slipping. Our preliminary results showed that AFM
with slip parameters outperformed the guess-and-slip vari-
ation for the ’Geometry Area (1996-97) [11] and the ’Self
Explanation sch_a3329ee9 Winter 2008 (CL)’ [3] datasets
(accessed via DataShop [12]) in terms of deviance informa-
tion criterion (a generalization of AIC for sampled data).
Further analysis showed that there was little data to esti-
mate the guessing portion of the logistic curve. This is be-
cause the average student error rate in these datasets starts
off at less than 50% and only gets lower with practice. This
is typical of many of the available tutor datasets, so for our
Bounded Logistic Regression approach we decided it would
be sufficient to model the slipping parameters.

4. EVALUATION
4.1 Method

We used bounded logistic regression to add slip parameters
to AFM and PFA, thus creating two new student learning
models: AFM + Slip and PFA + Slip. We were interested in
how these approaches compared with their traditional coun-
terparts and to Bayesian Knowledge Tracing, which param-
eterizes guess and slip. Furthermore, we were interested
in how these different approaches compared across different
datasets spanning distinct domains. To perform this evalu-
ation we fit each of the five models to five datasets we down-
loaded from DataShop [12]: Geometry Area (1996-97) [11],
Self Explanation sch_a3329ee9 Winter 2008 (CL)[3], IWT
Self-Explanation Study 1 (Spring 2009) (tutors only) [19],
IWT Self-Explanation Study 2 (Fall 2009) (tutors only) [20],
and Digital Games for Improving Number Sense - Study 1
[15]. These datasets cover the domains of geometry, equa-
tion solving, writing, and number line estimation. We se-
lected these datasets because they have undergone exten-
sive KC model refinement, including both manually created
models by domain experts and automatically-refined mod-
els using Learning Factors Analysis [5]. For all datasets we
used the best fitting KC model, based on unstratified cross
validation.

In addition to comparing the different statistical models’
predictive accuracies, we were interested in understanding



Table 1: In all five datasets the slip models outperform their non-slip counterparts in terms of log-likelihood
and cross validation. In four out of the five datasets, the PFA+Slip model outperforms the AFM+-Slip model
in terms of log-likelihood and cross validation performance. In this table “Par.” represents the number of
parameters in the model and the CV RMSE values are the averages of 10 runs of 10-fold un-stratified cross

validation.
Dataset Model Par. LL AIC BIC CV RMSE
Geometry
AFM 95 -2399.7 4989.4  5610.5 0.396
AFM+Slip 114 -2377.0  4982.0 5727.3 0.395
PFA 54 -2374.9  4857.8 5210.8 0.389
PFA+Slip 73 -2298.3 4742.6 5219.8 0.383
BKT 72 -2460.8  5065.7  5536.5 0.396
Equation Solving
AFM 106 3011.6 6235.2  6953.9 0.390
AFM+Slip 125 -2992.5 6235.0 7082.54 0.388
PFA 48 -3205.2  6506.4  6831.8 0.400
PFA+Slip 67 -3088.9 6311.8 6766.0 0.392
BKT 72 -3202.7 6549.5  T037.7 0.426
Writing 1
AFM 169 -3214.6  6767.2  7916.1 0.406
AFM-+Slip 196 -3214.6  6821.2  8153.6 0.406
PFA 72 -3212.0 6568.0 T7T057.4 0.401
PFA+Slip 99 -3158.0 6514.0 7187.0 0.398
BKT 104 -3480.2  7168.5  7875.6 0.419
Writing 2
AFM 129 -2976.4  6210.8  7096.6 0.375
AFM+Slip 145 -2962.8  6215.6  7211.3 0.373
PFA 45 -2994.7  6079.4 6388.4 0.373
PFA+Slip 61 2965.7 6053.4 6472.2 0.371
BKT 60 -3177.1  6474.2  6886.2 0.384
Number Line
AFM 93 -2352.7  4891.4  5484.0 0.433
AFM+Slip 115 -2356.3  4942.6  5675.4 0.432
PFA 62 -2337.5 4799.0 5194.1 0.430
PFA+Slip 84 -2318.9 4805.8 5341.1 0.428
BKT 84 -2548.7  5265.4  5800.7 0.451

and interpreting the situations in which slip parameters im-
prove model fit. Prior to analysis we hypothesized that slip-
ping parameters might have three potential effects on the
model fit: (1) enabling the model to capture true student
slipping behavior; i.e., KCs that have a non-zero base-rate
error, (2) enabling the model to fit steeper initial learning
rates while still making correct predictions at higher oppor-
tunity counts, and (3) enabling the model to compensate
for an underspecified knowledge component model. We fo-
cused in on one dataset, Geometry Area (1996-97), to ex-
plore these possibilities. Within this dataset we conducted
a residual analysis to explore possibilities (1) and (2). We
then refined the geometry KC model for a specific KC that
the slip model identified as having a high false negative rate
(i.e., slip value) to explore possibility (3). For brevity we
only show the results of AFM and AFM+Slip in these anal-
yses, but similar trends hold for PFA and PFA+Slip.

4.2 Results

4.2.1 Model Fits for Five Datasets

We fit each of the five models to the five datasets. Table 1
shows the resulting model fit statistics and the number of
parameters used in each model. AFM has 1 parameter per
student and 2 parameters per skill, PFA has 3 parameters

for each skill, and BKT has 4 parameters for each skill. The
slip variations have an additional parameter for each skill,
plus a parameter for the average slip rate. When using the
PFA models in practice many of the KCs never had any un-
successful practice (i.e., their failure count was always 0).
In these situations we removed the parameters for the fail-
ure learning rates because they have no effect on the model
behavior. Thus, in some situations, the number of param-
eters in each model might differ from the general trends.
All of the cross validation results are the average of 10 runs
of 10-fold unstratified cross validation, where the cross vali-
dated RMSE was computed using the predicted probability
of a correct response (rather than discrete correct/incorrect
predictions).

All of the slip models have better log-likelihood and cross
validation performance than their respective baseline mod-
els (AFM and PFM). Furthermore, in four out of the five
datasets, PFA+Slip has better cross validation performance
than AFM+Slip, even though it does not have individual
student parameters. Finally, all of the logistic models out-
performed traditional four-parameter BKT. Based on prior
work [16] we expected this last result, but we included BKT
as a comparison model that supports slipping. In particular,
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Figure 1: The AFM+Slip model better fits the
steeper learning rate of the Geometry dataset than
the AFM model, but both models fit the tail of the
learning curve reasonably well and the actual stu-
dent error appears to be converging to 0%. The
shaded regions denote the 95% confidence intervals
for the respective values.

Figure 3 shows an example of how the AFM+Slip model fits
the data more like the BKT model than the AFM model for
a KC with a high slip rate.

4.2.2  Residual Analysis

To investigate how the predictions of the slip models differ
from that of the traditional models we analyzed the resid-
uals for the AFM and AFM+Slip models on the Geometry
dataset. Figure 1 shows the actual and predicted error rates
for the two models on this dataset and Figure 2 shows the
model residuals plotted by opportunity count. Investigat-
ing patterns in residual error across opportunity counts is a
useful way of assessing systematic discrepancies between a
given model’s predicted learning curves and students’ actual
learning curves.

Although both models fit the data reasonably well, the slip
model better models the steepness at the beginning of the
learning curve. At low opportunity counts, AFM without
slip typically predicts a substantially flatter learning curve
compared to the actual data. The residual plot mirrors this
finding; the 95% confidence interval for the AFM residu-
als does not include zero for earlier opportunities and the
model flips from over-predicting success to under-predicting
it. The AFM+Slip model, in contrast, better models the
initial steepness of the learning curve. The 95% confidence
interval for the AFM+-Slip model residuals always includes
zero. Finally, we see no evidence of actual slipping behavior
in the tail of the learning curve: the 95% confidence in-
tervals for residuals in both models include zero for higher
opportunity counts. If true student slipping were occurring,
we would expect the traditional AFM model to overpredict
success in the tail, but we do not observe this.

Residual (Geometry Dataset)

Average Residual

W

20
Opportunities

=== AFM Residual === AFM+Slip Residual

Figure 2: The 95% confidence intervals (shaded re-
gions) for the residuals of the AFM model do not in-
clude zero for lower opportunity counts, the model
first overpredicts and then underpredicts success. In
contrast the 95% confidence intervals for residuals of
the AFM+-Slip model always include zero indicating
a better model fit.

4.2.3 KC Refinement Based on False Negatives

In order to explore the hypothesis that a high false neg-
ative, or slip, rate on a skill is indicative of a underspec-
ified knowledge component model, we analyzed a KC on
which the slip parameter was high and on which AFM and
AFM+Slip differed substantially in their predictions. One
KC, “geometry*compose-by-multiplication,” fit this criteria.
Figure 3 shows the learning curve with model predictions
for this KC. AFM+Slip makes predictions that are nearly
identical to BKT and seems to better fit the actual stu-
dent learning curve. Upon further investigation, we found
that many of the items labeled with this skill were on the
same problems. Within these problems, we noticed that
the later problem steps (items) might actually have been
solved by applying the “arithmetic” skill to the result of an
earlier application of the “compose-by-multiplication” skill.
We generated a new knowledge component model to reflect
these findings and re-fit the model using AFM. The pre-
dictions of this new model (AFM-New-KC) are also shown
in Figure 3. For the AFM-New-KC plot, we plotted the
observations with the opportunity counts from the original
KC model (x-axis) but with predicted errors from the new
KC model (y-axis). This was necessary for the purposes
of comparison to the original KC model predictions. Once
the knowledge component model was refined based on the
insights provided by fitting AFM+Slip, standard AFM im-
proved. Furthermore, based on this change the overall AFM
model fit improved to be on par with AFM+Slip in terms
of log-likelihood, AIC, and cross validation (LL = -2378.8,
AIC = 4947.6, BIC = 5568.6, and CV RMSE = 0.395).

S. DISCUSSION

Our model fit results show that the slip models have better
predictive accuracy (i.e., cross validation performance) and
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Figure 3: AFM+Slip looks much more like BKT for
this KC and seems to model the data better (the
overlapping purple and green lines). We took the
high false negative rate (i.e., the sharp floor in the
predicted error at approx. 11%) as an indicator that
the KC model might benefit from refinement. Re-
fitting the regular AFM model with a refined KC
model (AFM-new-KC) shows a better fit to the ac-
tual data. Shaded regions denote the 95% confi-
dence intervals for the respective values.

log-likelihood fits than their traditional counterparts across
all five datasets. Furthermore, the AIC scores generally mir-
ror this finding. These results suggest that the addition of
the slip parameters to the logistic model formalism results
in an improved model fit and an increased ability to predict
behavior on unseen data.

In four of the five datasets, PFA + Slip best fit the data
in terms of both log-likelihood and cross validation. In one
sense, its superior cross-validation performance is surpris-
ing because the PFA models (as implemented here) have no
student intercept parameters. However, they have an ad-
vantage for the cross validation statistic because they get
success and failure counts that include information about
performance on held out data, essentially giving these mod-
els an advantage over the other models. The better log-
likelihood (and often AIC) scores are indicative of a better
ability to fit the data that doesn’t suffer from this discrep-
ancy. However, PFA models have an advantage over AFM
for this statistic because AFM uses regularization, which in-
tentionally worsens the fit of the model to the data in an
effort to improve predictive accuracy. To test if regularizing
student parameters was causing PFA and PFA + Slip to out-
perform AFM and AFM + Slip we refit the AFM models to
the Geometry dataset with student parameter regularization
disabled and found that, at least for the Geometry dataset,
the PFA models still outperforms the AFM models in terms
of log-likelihood, AIC, BIC, and CV RMSE. These findings
suggest that the PFA models better fits the data than the
AFM models, but more work is needed to explore how best
to compare these two approaches and to determine when

one approach is preferable to another.

Lastly, the logistic models consistently outperform tradi-
tional four-parameter BKT. This is somewhat unsurprising
because BKT does not have individual student parameters
or separate learning rates for success and failure. However,
we still included traditional BKT as a baseline model that is
widely used and has explicit parameters for guess and slip.
In particular, Figure 3 shows that for a KCs with high slip
rate the AFM+Slip model performs more like BKT than
AFM, suggesting that the new model is able to fit slipping
and other false negative student behavior.

Given the finding that the slip models have better predictive
accuracy and log-likelihood fits than their traditional coun-
terparts, we investigated how the addition of slip parameters
changed the model predictions. Residual analyses on the Ge-
ometry dataset showed that both AFM and AFM+Slip had
similar fits to the data, but AFM+-Slip better fit the initial
steepness of the learning curve while maintaining a good
fit in the tail. This intuition is confirmed in the residual
by opportunity plot, which shows that the 95% confidence
intervals for the residuals from AFM exclude zero at low op-
portunity counts, first overpredicting success and then un-
derpredicting it. In contrast, the 95% confidence interval
for the residuals from AFM+Slip include zero at these same
low opportunity counts. This evidence supports the hypoth-
esis that adding slip parameters enables the model to better
accommodate steeper learning rates. In contrast, we find
no evidence to support the hypothesis that adding slipping
parameters enables the model to better fit non-zero base
rate error; i.e., true student slipping. If this were the case,
then we would expect AFM to overpredict success in the tail
(i.e., for the residuals to be non-zero at higher opportunity
counts), but we found no evidence that this occurred.

Finally, we demonstrated that high false negative, or slip,
rates can serve as detectors of KCs that might benefit from
further refinement. We identified a KC in the Geometry
dataset that had a high slip rate and that differed from the
traditional model: the “geometry*compose-by-multiplication”
KC. We found that this KC could be further refined and
showed that AFM with the refined KC model performed
on par with AFM+Slip in terms of log-likelihood and cross
validation. This suggests that adding slip parameters to a
model can enable it to compensate for an underspecified KC
model but, more importantly, can help identify these poorly
specified KCs. The newly discovered KC model better fit the
student data than the previous best model, which was the
result of years of hand and automated KC model refinement.

6. CONCLUSIONS

Logistic models of learning, such as AFM and PFA, are pop-
ular approaches for modeling educational data. However,
unlike models in the knowledge tracing family, they do not
have the ability to explicitly model guessing and slipping
rates on KCs. In this work we augmented traditional logis-
tic regression to support slipping rates using an approach
that we call Bounded Logistic Regression. We then used
this approach to create two new student models: AFM +
Slip and PFA + Slip. We then compared the performance
of these new models in relation to their traditional coun-
terparts. Furthermore, for AFM we explored how the addi-



tion of slip parameters changed the predictions made by the
model. We explored three possibilities: (1) they might en-
able the model to capture true student slipping behavior (i.e,
non-zero base-rate error), (2) they might enable the model
to accommodate steeper learning rates while still effectively
predicting performance at higher opportunity counts, and
(3) they might enable the model to compensate for an un-
derspecified knowledge component model.

To explore the first two possibilities, we conducted a residual
analysis and found that the slip parameters appear to help
the model fit steeper learning rates, rather than improving
model fit in the tail. To explore the third possibility, we used
a high false negative, or slip, rate as an indicator of where the
given KC model might benefit from refinement. We found
that after refining a KC model using this approach AFM
performance (e.g., CV, LL, AIC) improved to be on par with
AFM-Slip. This suggests that the slip parameters enable
the model to compensate for underspecified KC models and
that high slip values can be used to identify KCs that might
benefit from further KC label refinement.

7. LIMITATIONS AND FUTURE WORK

One key limitation of the current work is that we did not
explore issues of identifiability in the Bounded Logistic Re-
gression model. In particular, we have not yet demonstrated
that the log-likelihood for models using this formalism are
convex. In the current formulation we only model slip pa-
rameters (not guess parameters), so we expect identifiability
to be less of an issues. In line with this intuition we found
that the current approach returned reasonable parameter
values and consistently improved model fit across the five
data sets we explored. However, we recognize that the model
would benefit from a more rigorous analysis of the quality of
estimated parameters and acknowledge that this would be
an important direction for future work.

Finally, the current work focuses on comparing the slip mod-
els to their traditional counterparts, but future work might
explore how different models (e.g., AFM+Slip, PFA+Slip,
and BKT) compare to one another. In the current work we
purposefully avoided making conclusions about how these
models compare because there is some ambiguity in how
different approaches are evaluated. For example, Yudelson’s
Bayesian Knowledge Tracing toolkit [23] performs incremen-
tal prediction during cross validation (i.e., predicting stu-
dent performance on a step and then “showing” the model
the actual performance before moving on to the next step).
While this approach aligns well with the actual use of the
BKT model it gives an unfair advantage when comparing it
to cross validated AFM, which gets no information about
test data when making predictions. A similar complication
exists for PFA, which gets information about the perfor-
mance of unseen steps from the success and failure counts.
A more equivalent comparison would be to perform an incre-
mental prediction using AFM and PFA, but this was beyond
the scope of the current paper and represents an open area
for future work.
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APPENDIX
A. PARAMETER ESTIMATION

Similar to standard logistic regression we assume the data
follows a binomial distribution. Thus, the likelihood and
log-likelihood are as follows:

Likelihood(data) = Hpii(l — py) (v
i=1
li(data) = ) wilog(p:) + (1 —y:)log(1 — p:)
i=1

where y; is 0 or 1 depending on if the given step i was correct.
As mentioned earlier, p; is defined as:

where s; is the linear combination of the slip parameters
and z; is the linear combination of the student and item
parameters.

To estimate the parameters values for bounded logistic re-
gression, we maximize the conditional maximum likelihood
of the data using sequential quadratic programming (specif-
ically the sqp package in Octave). This approach reduces
to applying the Newton-Raphson method, but properly ac-
counts for situations when the parameter values are con-
strained, such as the positive bound for the learning rates in
AFM and PFA. To apply this method, we needed to com-
pute the gradient and hessian for the likelihood of the data
given the model.

To compute the gradient we took the derivative with re-
spect to the student and item parameters (w’s) and slip
parameters (sp’s). For the student and item parameters the
gradient is the following:
dll - Tia (yz — pz)

= 2 T

dw, 1+es (1—ps)

i=1

where x;, is the value of the student or item feature that is
being weighted by parameter w, for step 4.

Similarly, for the slip parameters the gradient is the follow-
ing:

dll _ i Gia (yi_pi)

dspa —1+es (1—ps)

where g;q, is the value of the slip feature (in AFM and PFA
these are the 0 or 1 entries from the Q-matrix) that is being
weighted by parameter sp, for step i.

Given these gradients we have a hessian matrix with val-
ues for the interactions of the ws with each other, the ws
with the sps, and the sps with each other. These values are
defined as the following:

a2l - Tiaib
- = i(ys — 1
dwaduw, ; AT e —pe =1

+e* (pi — y:)(1 — pi))

Ul - Giaqib
dspadsps i(ys — 1
dSPadSpb ; (]_ + 6577)2(]_ _ pi)2 [p (y )
e (pi — yi) (1 — pi)]
ﬂ _ zﬂ: Tia (pi — 1) + (yi — pi)
dwadspy 1+ ezi (1—pi)2

i=1

Finally, in our formulation we applied an Lo regularization
to all of the parameter values (i.e., a normal prior with mean
0), where the A parameter of the regularization could be set
individually for each model parameter. For the AFM models
we set A to 1 for the student parameters. For all of the slip
models we A to 1 for the KC slip parameters (i.e., ds). For
all other parameters we turned regularization off (A = 0).



