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ABSTRACT 
Mastery learning in intelligent tutoring systems produces a 
differential attrition of students over time, based on their levels of 
knowledge and ability. This results in a systematic bias when 
student data are aggregated to produce learning curves. We 
outline a formal framework, based on Bayesian Knowledge 
Tracing, to evaluate the impact of differential student attrition in 
mastery learning systems, and use simulations to investigate the 
impact of this effect in both homogeneous and mixed populations 
of learners.	  
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1. MASTERY ATTRITION BIAS 
Attrition bias occurs when some aspect of an experimental design 
has a significant and systematic effect on whether subjects 
complete all measures [6]. Although students working with an 
intelligent tutoring system (ITS) are not ipso facto in any 
experimental conditions, the mastery learning assessment built 
into many such systems creates an attrition bias. ITSs that 
implement mastery learning assess a student’s performance as she 
works through instructional material, and continually re-evaluate 
whether she has received sufficient practice on targeted skills or 
knowledge components (KCs). This is a commonly used method 
to allocate student time, but by selectively removing students who 
master material quickly from the sample, it differentially biases 
the resulting data in ways that may conceal the learning of 
individuals [4]. ITSs that re-visit previously mastered KCs may 
exhibit this same effect only within blocks of contiguous practice. 

In the Bayesian Knowledge Tracing (BKT)[2] model of student 
learning, the performance of an individual student can be 
described by the equation: 

𝑃! 𝑡 = 𝑃! 𝑡 1 − 𝜃! + (1 − 𝑃! 𝑡 )𝜃! 

where 𝑃! 𝑡  is the probability that the student will give a correct 
response at time t, given the probability of student knowledge, 
𝑃! 𝑡 , and the performance parameters 𝜃!, 𝜃! (slip and guess). 
Consider a homogenous population of learners, all with the same 
parameters. We describe the average correctness of responses as: 

𝐶 𝑡 =
𝐾 𝑡 − 𝑆(𝑡) + 𝐺(𝑡)

𝐾 𝑡 + 𝑈(𝑡)
 

where 𝐾 𝑡  and 𝑈 𝑡  are the numbers of students in the known 
and unknown states at time t, respectively. 𝑆 𝑡  and 𝐺 𝑡  are 
binomial random variables giving the numbers of slips and 
guesses:  

𝑆 𝑡 ~𝐵 𝐾 𝑡 , 𝜃! , 𝐺(𝑡)~𝐵 𝑈 𝑡 , 𝜃!  

It can be shown that the expected behavior of the aggregate 
learning curve: 

𝐸 𝐶 𝑡 = 𝐸[𝐾 𝑡 ] 1 − 𝜃! + (1 − 𝐸[𝐾 𝑡 ])𝜃! 

is controlled by the ratio of students in the known state: 

𝐾 𝑡 =
𝐾 𝑡

𝐾 𝑡 + 𝑈 𝑡
 

The aggregate learning curve may be described as a weighted 
average between the expected performance in the known and 
unknown states, weighted by the ratio of students in each. The 
known and unknown populations will change according to the 
following stochastic recurrence relations: 

𝐾 𝑡 = 𝐾 𝑡 − 1 + 𝐿 𝑡 −𝑀!(𝑡) 

𝑈 𝑡 = 𝑈 𝑡 − 1 − 𝐿 𝑡 −𝑀!(𝑡) 

where 𝐿 𝑡  is the number of students who learn the skill at time t, 
and so transition from the unknown into the known state. It is also 
binomially distributed: 𝐿(𝑡)~𝐵(𝑈 𝑡 − 1 , 𝜃!), where 𝜃! is the 
BKT learning (aka. transition) parameter. 𝑀! 𝑡  and 𝑀!(𝑡) give 
the numbers of students from the known and unknown states, 
respectively, that are judged to have mastered the material by the 
system, and so removed from the population. The initial share of 
students in the known and unknown states is controlled by 𝜃!, the 
initial knowledge parameter from BKT: 

𝐾 1 = 𝐼~𝐵(𝑁, 𝜃!).  

From this we can see that the learning curve begins from a 
theoretical initial value of:  

𝐸[𝐶 1 ] = 𝜃! 1 − 𝜃! + (1 − 𝜃!)𝜃! 

In the no-mastery attrition situation, where 𝑀! 𝑡  and 𝑀! 𝑡  are 
always 0, 𝐾 𝑡  will tend towards 1. Therefore the learning curve 
will converge to a theoretical maximum: 

lim
!→!

𝐸[𝐶 𝑡 ] = 1 − 𝜃!  

We see this behavior in the left-hand plot of Figure 1. 

 
Figure 1: simulated learning curves with (right) and without 

(left) mastery learning 



However, when mastery learning is involved, we must consider a 
balance of factors. We can expand the 𝐾 𝑡  ratio in terms of its 
recurrence relations: 

𝐾 𝑡 =
𝐾 𝑡 − 1 + 𝐿 𝑡 −𝑀!(𝑡)

𝐾 𝑡 − 1 + 𝑈 𝑡 − 1 −𝑀!(𝑡) −𝑀!(𝑡)
 

Assuming 𝑀!(𝑡) is negligible, the changes in this ratio depend on 
the relative magnitudes of 𝐿 𝑡  and 𝑀!(𝑡). Except for when the 
unknown population has diminished to zero, the denominator of 
the ratio is larger than the numerator, so subtracting 𝑀!(𝑡) from 
both will lead to a reduction in 𝐾 𝑡 . Since a falling 𝐾 𝑡  ratio 
increases the weight that the unknown states play in the aggregate 
curve, mastery learning leads to lower aggregate performance, 
ceteris paribus.  

Although learning and mastery have opposite effects on the 
instantaneous change in the 𝐾 𝑡  ratio, they are not constant or 
independent over time. Learning has a negative-feedback 
relationship to itself: it reduces the size of the unknown student 
population, so the expected value of 𝐿 𝑡  will diminish over time. 
Mastery also has a negative-feedback relationship with the known 
population, but learning tends to counter-act that effect. Thus, 
learning has a positive-reinforcement relationship on mastery. In 
sum, there are many reasons why mastery learning leads to 
aggregate learning curves that do not take the shape we expect in 
their idealized form.  

2. HETEROGENEOUS POPULATIONS 
So far we have been considering idealized situations in which all 
students are instances of a BKT model with a common set of 
parameters. Naturally, we wish to investigate what can happen to 
aggregate learning curves when we have a heterogeneous 
population of different learners. There are very many different 
possible ways a heterogeneous population might be composed, 
and there could be very many perverse aggregate learning curves 
created by specially constructed mixed populations. We illustrate 
just a couple of examples that show interesting aggregate 
behavior. 

 
Figure 2: simulated heterogeneous populations. 

Figure 2 demonstrates a couple of examples representing the 
range of aggregate behavior possible in mixed populations. In the 
left-hand plot, we show a population with similar initial 
knowledge, but composed of both fast-learning and slow-learning 
students. In the right-hand plot, we have a mixed population of 
higher-performing and lower-performing students. In both cases, 
the initial opportunities are a balanced mix of both populations. 
However, as the better students are preferentially removed by the 
mastery-learning system, they represent a diminishing fraction of 
the total population, and eventually the aggregate curve converges 
to that of the lower-performing sub-population. In the one case, 
the aggregate curve demonstrates a rising and falling pattern, 
whereas in the other case, the curve appears to demonstrate 
“negative learning”. In a mixed population, the frequency of 

correct responses is the weighted average across the (j) sub-
populations: 

𝐶 𝑡 = !
!(!) 𝑁 ! (𝑡)

!

!!!
𝐾 ! 𝑡 − 𝑆 ! 𝑡 + 𝐺 ! (𝑡)  

We could easily extend this notation of sub-populations to distinct 
per-student learning profiles. In this situation, 𝐽 = 𝑁 𝑡  and 
𝑁 ! 𝑡  is either 1 or 0, depending on whether the jth student has 
“mastered-out” or not.  

3. CONCLUSIONS 
Aggregate learning curves are used to evaluate and improve 
instructional systems[3]. However, there are significant distortions 
to aggregate measures of student learning created by the 
differential attrition bias inherent to mastery learning systems. 
Aggregate performance on each step shown by learning curves 
need not be representative of the learning of individuals or groups 
of students [4]. Aggregate measures of such attrition-biased data 
will tend to under-represent the amount of learning occurring. 
Explicitly modeling the effect of this attrition bias may be a 
fruitful direction for future research. 
A mixed population with different learning characteristics can 
introduce additional distortions when mastery learning is 
involved. There has been much work already on identifying the 
learning characteristics of individuals and sub-populations[1][5]. 
Further developments in this direction would help build richer and 
more accurate models of learning robust to the attrition bias in 
mixed-population data.  
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