
Measuring the Moment of Learning with an
Information-Theoretic Approach

Brett van de Sande
Arizona State University

PO Box 878809
Tempe, AZ 85287
bvds@asu.edu

ABSTRACT
There are various methods for determining the moment at
which a student has learned a given skill. Using the Akaike
information criterion (AIC), we introduce an approach for
determining the probability that an individual student has
learned a given skill at a particular problem-solving step. We
then investigate how well this approach works when applied
to student log data. Using log data from students using
the Andes intelligent tutor system for an entire semester,
we show that our method can detect statistically significant
amounts of learning, when aggregated over skills or students.
In the context of intelligent tutor systems, one can use this
method to detect when students may have learned a skill
and, from this information, infer the relative effectiveness of
any help given to the student or of any behavior in which
the student has engaged.
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1. INTRODUCTION
The traditional experimental paradigm for studying student
learning is to use a pre-test and post-test combined with
two or more experimental conditions. Pre-test and post-
test scores can indicate whether learning has occurred, but
not when it may have occurred. At best, one might infer
when learning has occurred if an isolated change to the in-
structional materials or help-giving strategy results in better
post-test performance. It is more difficult to infer whether
a change in student behavior at some point has resulted in
greater learning, since student behavior is largely uncon-
trolled and must be recorded in some way. In a laboratory
setting, these issues can be addressed by careful experimen-
tal design, albeit with an accompanying loss of authenticity.

Moving from the laboratory to a more realistic setting, such
as a classroom study, presents a challenge since there is nec-
essarily an extended time between any pre-test and post-

test. Heckler and Sayre [4] introduce an experimental tech-
nique where they administered a test to a different subgroup
of students in a large physics class each week during the
quarter, cycling through the entire class over the course of
the quarter (a between-students longitudinal study). With
a sufficiently large number of students (1694 students over
five quarters), they were able to produce plots of student
mastery of various skills as a function of time, and identify
exactly which week(s) students learned a particular skill.
However, the shortest time scale that one could imagine for
this kind of approach (administering a test in a classroom
setting) can, at best, be a day or so. Can we do better?

The use of an intelligent tutor systems (ITS) provides a way
forward. In this case, student activity is analyzed and logged
for each user interface element change, with a granularity
of typically several 10s of seconds. Instead of relying on a
distant pre-test or post-test, the experimenter can examine
student (or tutor system) activity in the immediate vicinity
of the event of interest.

Baker, Goldstein, and Heffernan [1] construct a model that
predicts the probability that a student has learned a skill at
a particular time based on the Bayesian Knowledge Tracing
(BKT) algorithm [3]. BKT gives the probability that the
student has mastered a skill at step j using the students
performance on previous opportunities to apply that skill.
The authors supplement the BKT result with information on
student correctness for the two subsequent steps j+1 and j+
2 and infer the probability that the student learned the skill
at that step. Finally, they use their model to train a second
machine-learned model that does not rely on future student
behavior, so it could be run in real time as the student is
working

We will address the same problem using an information-
theoretic approach. Starting with the Akaike information
criterion and a simple model of learning, we use a multi-
model strategy to predict the probability that learning has
occurred at a given step, and to predict how much learning
has occurred. We apply our approach to student log data
from an introductory physics course. We find that, for an
individual student and skill, detection of learning has large
uncertainties. However, if one aggregates over skills or stu-
dents, then learning can be detected at the desired level of
significance.



1.1 Correct/Incorrect steps
Our stated goal is to determine student learning for an indi-
vidual student as they progress through a course. What ob-
servable quantities should be used to determine student mas-
tery? One possible observable is “correct/incorrect steps,”
whether the student correctly applies a given skill at a par-
ticular problem-solving step without any preceding errors or
hints. There are other observables that may give us clues
on mastery: for instance, how much time a student takes
to complete a step that involved a given skill. However,
other such observables typically need some additional theo-
retical interpretation. Exempli gratia, What is the relation
between time taken and mastery? Baker, Goldstein, and
Heffernan [1] develop a model of learning based on a Hidden
Markov model approach. They start with a set of 25 addi-
tional observables (for instance, “time to complete a step”)
and construct their model and use correct/incorrect steps
(as defined above) to calibrate the additional observables
and determine which are statistically significant. Naturally,
it is desirable to eventually include such additional observ-
ables in any determination of student learning. However, in
the present investigation, we will focus on correct/incorrect
steps.

What do we mean by a step? A student attempts some
number of steps when solving a problem. Usually, a step j
is associated with creating/modifying a single user interface
object (writing an equation, drawing a vector, defining a
quantity, et cetera) and is a distinct part of the problem
solution (that is, help-giving dialogs are not considered to be
steps). A student may attempt a particular problem solving
step, delete the object, and later attempt that solution step
again. A step is an opportunity to learn a given Knowledge
Component (KC) [6] if the student must apply that KC or
skill to complete the step.

For each KC and student, we select all relevant step at-
tempts and mark each step as “correct” (or 1) if the student
completes that step correctly without any preceding errors
or requests for help; otherwise, we mark the step as “incor-
rect” (or 0). A single student’s performance on a single KC
can be expressed as a bit sequence, exempli gratia 00101011.

2. THE STEP MODEL
We need to compare the student log data to some sort of
model of learning. In another paper [5], we introduced the
“step model” and showed that it was competitive with other
popular models of learning when applied to individual stu-
dent log data. It is defined as:

Pstep(j) =

{
g, j < L

1− s, j ≥ L (1)

where L is the step where the student first shows mastery of
the KC, g is the“guess rate,” the probability that the student
gets a step correct by accident, and s is the “slip rate,” the
chance that the student makes an error after learning the
skill. These are analogous to the guess and slip parameters
of BKT [3]. This model assumes that learning occurs all at
once, reminiscent of “eureka learning” discussed by [1].

2.1 Method
We examined log data from 12 students taking an inten-
sive introductory physics course at St. Anselm College dur-

1 5 10 50 100 500 1000
1

5

10

50

100

500

Number of steps, n

N
u
m

b
er

o
f

st
u
d
en

t-
K

C
se

q
u
en

ce
s

Figure 1: Histogram of number of distinct student-
KC sequences in student dataset A having a given
number of steps n.

ing summer 2011. The course covered the same content as
a normal two-semester introductory course. Log data was
recorded as students solved homework problems while using
the Andes intelligent tutor homework system [7]. 231 hours
of log data were recorded. Each step was assigned to one
or more different KCs. The dataset contains a total of 2017
distinct student-KC sequences covering a total of 245 dis-
tinct KCs. We will refer to this dataset as student dataset
A. See Figure 1 for a histogram of the number student-KC
sequences having a given number of steps.

Most KCs are associated with physics or relevant math skills
while others are associated with Andes conventions or user-
interface actions (such as, notation for defining a variable).
The student-KC sequences with the largest number of steps
are associated with user-interface related skills, since these
skills are exercised throughout the entire course.

One of the most remarkable properties of the distribution
in Fig. 1 is the large number of student-KC sequences con-
taining just a few steps. The presence of many student-KC
sequences with just one or two steps may indicate that the
default cognitive model associated with this tutor system
may be sub-optimal; there has not been any attempt, to
date, to improve on the cognitive model of Andes with, say,
Learning Factors Analysis [2]. Another contributing factor
is the way that introductory physics is taught in most insti-
tutions, with relatively little repetition of similar problems.
This is quite different than, for instance, a typical middle
school math curriculum where there are a large number of
similar problems in a homework assignment.

3. MULTI-MODEL APPROACH
We need to determine the step where a specific student has
learned a particular skill. Our strategy is to take the step
model, Pstep(j), and treat L as a constant, yielding a set
of n sub-models Pstep,L(j), one for each value of L. We
then fit each of the n sub-models to the student data and
calculate an AIC value. Finally, we find the Akaike weighs
for each of the sub-models. The Akaike weights give the
relative probability that learning occurred at each step.
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Figure 2: Akaike weights for the sub-models
Pstep,L(j). This gives the relative probability that the
student learned the KC just before step L. The case
L = 1 corresponds to no learning occurring during
use of the ITS.

Let us illustrate this technique with a simple example. Sup-
pose the bit sequence for a particular student-KC sequence
is 00011011 (8 opportunities); see Fig. 2. We fit this bit se-
quence to 8 sub-models of the step model, corresponding to
L ∈ {1, 2, . . . , 8}, by maximizing the log likelihood, logLL.
The associated AIC values are given by AICL = 2K−logLL
where K is the number of fit parameters. Note that there
are two parameters (s and g) when L > 1 and there is only
one parameter (s) when L = 1. Not surprisingly, the best fit
(lowest AIC) corresponds to the first “1” in the bit sequence
at step 4. From the AICs, we calculate the Akaike weights

wL =
e−AICL/2∑
L′ e−AICL′/2

. (2)

The Akaike weight wL gives the relative probability that
sub-model Pstep,L(j) is, of all the sub-models, the closest to
the the model that actually generated the data.

Note that the case L = 1 corresponds to the student having
“learned the skill” some time before the first step or after
the last step. That is to say, the student does not acquire
the skill while using the tutor system. Thus, w1 should be
interpreted as the relative probability that no learning has
occurred while using the tutor system.

4. WEIGHTED GAIN
Our ultimate goal is to distinguish steps that result in learn-
ing from steps that do not. Hopefully, one can use this in-
formation to infer something about the effectiveness of the
help given on a particular step, or the effectiveness of the
student activity on that step.

It is not sufficient to know when learning has occurred but
one must also determine how much learning has occurred.
Consider the bit sequence 11011000. When fit to the step
model, the best fit will occur at L = 6 but this would corre-
spond to a decrease in student performance for that skill. In
many cases seen in our log data, the change in student per-
formance is almost zero. In order to take this into account,
we propose using the Akaike weight wL times the associated
performance gain ∆L to characterize a step. We define the
performance gain ∆L = 1 − ĝ − ŝ where ĝ and ŝ are the
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Figure 3: Weighted gain wL∆L as a function of L
for an example bit sequence. The associated quality
factor is Q = 0.66 ± 0.29; it is significantly smaller
than 1 since the student makes a slip on step 6. Q is
significantly greater than zero at the p = 0.01 level.
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Figure 4: Histogram of weighted gains wL∆L for all
steps in all student-KC sequences of dataset A.

Maximum Likelihood estimators for g and s given by sub-
model Pstep,L(j). For the “no learning” case L = 1, we set
∆1 = 0. We will call wL∆L the “weighted gain” associated
with Pstep,L(j). A calculation of wL∆L for an example bit
sequence is shown in Fig. 3. Not surprisingly, the largest
gain occurs at L = 4, corresponding to the first 1 in the bit
sequence. The remaining weighted gains are much smaller.

A histogram of wL∆L for student dataset A is shown in
Fig. 4. We find that the vast majority of steps (29730)
have almost zero weighted gain. We also see that there is
a significant number of steps with negative gain (988), but
there are somewhat more steps with positive gain (1312) .

The fact that there are so many steps with negative gain is
symptomatic of bit sequences that are very noisy (a lot of
randomness). Indeed, if we compare the histogram for stu-
dent dataset A with the histogram for a randomly generated
dataset R (we take A and randomly permute the steps) we
find a similar distribution; see Fig. 5.

What would the distribution look like if the data weren’t so
noisy? To see this, we generated an artificial “ideal” dataset
I where there were no slips or guesses, but having the same
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Figure 5: Histogram of weighted gains wL∆L for the
student dataset A, a randomly generated dataset R,
and an artificial ideal dataset I.

length distribution as A (Fig. 1). Thus, the bit sequences
in I all have the form 00 · · · 011 · · · 1. In this case, for each
student-KC sequence, we expect a single large weighted gain
(corresponding to the first 1 in the bit sequence) and the
remaining weighted gains to be nearly zero. The resulting
distribution of gains is shown in Fig. 5.

We propose to use the following average of the weighted
gains as a “quality index” for determining how suitable a
dataset is for determining the point of learning for an indi-
vidual student-KC sequence:

Q =
1

N

∑
α

∑
L

wL∆L (3)

where α is an index running over allN student-KC sequences
in a dataset. We use the sample standard deviation of the
weighted gains wL∆L to calculate the standard error asso-
ciated with Q. An example calculation is shown in Fig. 3.

For the random dataset R, the distribution of ∆L is sym-
metric about zero and Q approaches zero as N → ∞. For
the “ideal” dataset I, we expect that, when L coincides
with the first 1 in the bit sequence, wL will be nearly one
with the associated ∆L also nearly one so that Q → 1 in
the limit of many opportunities. Numerically, we obtain
Q = 0.5240 ± 0.0003. The fact that it is smaller than one
is due to the large number of student-KC sequences hav-
ing just a few steps. For the student dataset A, we obtain
Q = 0.0467± 0.0065, which is small, but significantly larger
than zero (p < 0.001). Thus, we conclude that one can
detect statistically significant learning when applying our
method to this student dataset, with the location of that
learning given by the Akaike weights wL.

5. CONCLUSION
We believe that a direct estimate of the moment when a
student learns a skill could be very useful for improving
instruction, improving help-giving, and understanding stu-
dent learning. However, the question of whether learning
has occurred at a particular step can only be answered in a
probabilistic sense: unambiguous“Aha moments”seem to be
relatively rare. Using the Akaike Information Criterion, we
have introduced a method for determining this probability.

As can be seen in Fig. 5, there is not much difference between
our student dataset and a randomly generated dataset. How-
ever, the quality index Q which can be used to quantify the
size of the signal of learning as well as the size of the back-
ground. We see that the quality index Q = 0.0467± 0.0065
for the student dataset A is roughly 10% the size of Q for the
ideal dataset I; we interpret this to mean that the “signal”
for learning is roughly 10% as big as the “noise.” However,
the fact that Q for the student dataset is seven standard
deviations from zero means that we have detected learning
for 2000 student-KC sequences with room to spare. Using
the fact that the error is proportional 1/

√
N , where N is the

number of student-KC sequences, we estimate that we could
still detect learning with only 260 student-KC sequences at
the p = 0.01 level. This gives us an initial estimate for
the amount of log data needed to measure the moment of
learning, at least for students using the Andes tutor system.

Finally, we see that many of the student-KC sequences are
quite short, as shown in Fig. 1. We speculate that this is due
to to the way that introductory physics is typically taught,
with relatively little reinforcement of specific KCs, empha-
sizing, instead, more general problem solving meta-skills.
If we were to repeat this analysis for high school or grade
school math, where there is more repetition, we speculate
that there would be significantly fewer KCs with less than
10 opportunities and that detecting when learning has oc-
curred would be significantly easier.
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