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Abstract. We introduce an open data repository and set of associated
visualization and analysis tools. The Pittsburgh Science of Learning Center’s
“DataShop” has data from thousands of students deriving from interactions with
on-line course materials and intelligent tutoring systems. The data is fine-
grained, with student actions recorded roughly every 20 seconds, and it is
longitudinal, spanning semester or yearlong courses. Currently over 110 datasets
are stored including nearly 18 million student actions. Most student actions are
“coded” meaning they are not only graded as correct or incorrect, but are
categorized in terms of the hypothesized competencies or knowledge
components neede to perform that action. Researchers have analyzed these data
to better understand student cognitive and affective states and the results have
been used to redesign instruction and demonstrably improve student learning.

1 Introduction

One reason for emerging excitement about educational data mining is the increasing
availability of student learning data. These data are coming from many sources including
data from schools, like standardized tests and student and teacher background variables
(e.g., www.icpsr.umich.edu/IAED), and videos of classroom interactions (e.g.,
www.talkbank.org).  In this paper we present an open data repository of learning data
coming primarily from computer “click stream” data that arises from student interaction
and system response in online courses, online assessment, intelligent tutoring systems,
virtual labs, simulations, and other forms of educational technology.

Extensive new data sources have been transformational in science [2] and business (e.g.,
Google, FedEx).  Learning scientists can also benefit from having large repositories of
data available, easily accessible, and with associated data visualization and analysis tools.
Moving toward a common set of standards for storing data will facilitate more efficient,
extensive storage and use of such data, as well as greater sharing of visualization and
analysis techniques.  Providing learning scientists with rich student learning data and
advancing toward common standards are key goals of the Pittsburgh Science of Learning
Center’s DataShop (http:// learnlab.org/datashop).

2 The Pittsburgh Science of Learning Center’s DataShop

DataShop is a data repository and web application for learning science researchers.  It
provides secure data storage as well as an array of analysis and visualization tools
available through a web-based interface.  Primarily, DataShop stores learner interactions
from online course materials that include intelligent tutors.  Data is collected from the
seven PSLC courses: Algebra, Chemistry, Chinese, English, French, Geometry and



Physics.  There are also sources external to the PSLC that contribute to DataShop, such
as middle school math data from the Assistments project (http://www.assistment.org).

DataShop can store any type of data associated with a course or study.  This includes
intelligent tutor data (which is capable of being analyzed through the analysis and
visualization tools) as well as any related publications, files, presentations, or electronic
artifacts a researcher would like to store.  Courses and studies are represented as datasets,
which are organized by project.  An example of this is the “Algebra 1 2005-2006”
dataset, which is grouped with similar datasets under the “Algebra Course” project.
Semantic information can be stored for each dataset, providing additional context.

The amount of data in DataShop is constantly growing. As of May 2008, DataShop offers
114 datasets under 42 projects, most generated within the past 4 years. The majority of
datasets contain tutor interaction data, while others are files-only datasets, used solely for
central and secure file storage.  There are about 18 million tutor transactions, representing
about 70,000 student hours available for analysis.

Researchers have utilized DataShop to explore learning issues in a variety of educational
domains.  These include, but are not limited to, collaborative problem solving in Algebra
[17], self-explanation in Physics [9], the effectiveness of worked examples and polite
language in a Stoichiometry tutor [11] and the optimization of knowledge component
learning in Chinese [14].

2.1 Logging & Storage Models

Tutor data is typically parsed from messages logged by automated computer tutors
employing the DataShop XML format, such as the one depicted in Figure 1.

Figure 1. An example problem, “Making Cans”, from Carnegie Learning’s Cognitive
Tutor 2005.

In the “Making Cans” example shown in Figure 1, a student completes a problem where
she is asked to find the area of a piece of scrap metal left over after removing a circular
area (the end of a can) from a metal square. The student enters everything in the
worksheet except for the row labels, and column and ‘Unit’ labels for the first three



columns.  In addition to providing students with feedback and instruction, the tutor
records the student’s actions and tutor responses, and stores them in a log file, which is
imported and analyzed by DataShop.

The DataShop logging format differs from existing standard formats in that it attempts to
capture student-tutor interaction history at a fine-grained level, while also providing
context for such interactions; the format does not attempt to describe, a priori, learning
resources and how they’re transferred (e.g., LOM, SCORM) or test content (e.g., IMS-
QTI). In this way, the format is essentially descriptive, not prescriptive. The DataShop
logging model is represented by the following constructs [16]:

• Context message: the student, problem, and session with the tutor

• Tool message: represents an action in the tool performed by a student or tutor
• Tutor message: represents a tutor’s response to a student action

Below we see example context, tool, and tutor messages in the DataShop XML format:

<context_message context_message_id="C2badca9c5c:-7fe5" name="START_PROBLEM">
  <dataset> <name>Geometry Hampton 2005-2006</name>
    <level type="Lesson"> <name>PACT-AREA</name>
      <level type="Section"> <name>PACT-AREA-6</name>
        <problem> <name>MAKING-CANS</name> </problem>
      </level>
    </level>
  </dataset>
</context_message>
<tool_message context_message_id="C2badca9c5c:-7fe5">
  <semantic_event transaction_id="T2a9c5c:-7fe7" name="ATTEMPT" />
  <event_descriptor>
    <selection>(POG-AREA QUESTION2)</selection>
    <action>INPUT-CELL-VALUE</action>
    <input>200.96</input>
  </event_descriptor>
</tool_message>

<tutor_message context_message_id="C2badca9c5c:-7fe5">
  <semantic_event transaction_id="T2a9c5c:-7fe7" name="RESULT" />
  <event_descriptor> … [as above] … </event_descriptor>
  <action_evaluation>CORRECT</action_evaluation>
</tutor_message>

In this example, the student attempted problem “MAKING-CANS” in the “PACT-
AREA” lesson of the Geometry tutor.  Looking at the tool and tutor message pair, we see
the student correctly entered “200.96” as the answer. Tool and tutor messages are
traditionally paired with each other (by context message), allowing DataShop to interpret
the student action and the tutor’s response in conjunction.  These pairs are then stored as
a single tutor transaction in the database.  Table 1 below illustrates how actions from the
Making Cans example are interpreted and stored as tutor transactions.

A tutor transaction stores details such as the student(s), session, time, problem, problem
subgoal (step), attempt number, student input, tutor response, number of hints, conditions
assigned to the problem step, as well as knowledge components (skills).   Unpaired tool
messages can be used to represent untutored actions, such as a student starting audio
playback, and are stored in the repository as well.



Table 1. A simplified tutor transaction excerpt from the “Making Cans” example.

Multiple tool and tutor messages are typically logged for a single problem-solving
activity.  Problem-solving activity is broken down into “steps” which represent
completion of possible subgoals or pieces of a problem solution.  Students often make
multiple attempts at a step or get instructional help on a step and each of these attempts or
help requests are stored as a separate tutor transaction in the database.

In the “Making Cans” example, we see the student attempted the “(SCRAP-METAL-
AREA Q1)” step three times (transaction numbers 2, 3 and 6 in Table 1).  We can
ascertain from the transactions that the student was unsuccessful in her first two attempts,
providing an answer of “32” and “4”, both labeled as incorrect by the tutor.  On the third
attempt, the student successfully completed the problem step, providing an input of 13.76
(as can be seen in Figure 1).

To allow for fast and easy visualization and analysis of data, tutor transactions are
aggregated into a student-step rollup table.  This “denormalized” table aggregates steps
by student, problem, and step and is used by many of the DataShop tools, such as the
Performance Profiler and Learning Curve.  An example of how the “Making Cans” tutor
transactions are aggregated by student-step is depicted in Table 2.

The student-step roll-up table stores an array of useful step information, some of which is
depicted above.  In the “(SCRAP-METAL-AREA Q1)” step in the “Making Cans”
example, we can see that the three tutor transactions are now rolled into a single step
entry (line number 9 in Table 2).  “Opportunity count” is two since the student saw the
“Compose-Areas” knowledge component twice.  “Total incorrects” is two, since she



made two incorrect attempts.  “Assistance score”, which consists of total hints added to
total incorrects, is two.  “Error rate”, whether the first attempt was an incorrect action or
hint request, is 1 (or 100%) because the student’s first attempt was an error.

Table 2. Data from the “Making Cans” example, aggregated by student-step

Each step in a problem requires the student to know something—a relevant concept or
skill—to perform the step correctly. This small unit of knowledge is termed a
“knowledge component”, a key notion in the PSLC’s theoretical framework
(learnlab.org/research/wiki). To document this required concept or skill, a tutor author
labels steps with a hypothesized knowledge component(s) required for correct completion
of the step.  In the “Making Cans” example, we see the knowledge component
“Compose-Areas” assigned to the correct transaction (row 6 of Table 1) for the
“(SCRAP-METAL-AREA Q1)” step.

A knowledge component codes for a general student capability to accomplish steps in
tasks.  Knowledge component modeling, the process of assigning knowledge components
to steps, bolsters the usefulness of intelligent tutor data by providing additional context
for a step.   A step can have zero, one or multiple knowledge components associated with
it.  Steps that have assigned knowledge components are used to produce a variety of
“learning curves”.  Figure 2 below depicts error rate learning curves generated by
DataShop. In this graph, error rate, or the percentage of students that asked for a hint or
made an incorrect attempt on their first attempt on steps associated with the knowledge
component, is shown on the y-axis. The x-axis (“Opportunity”) indicates the nth time
(e.g., 4 is the 4th time) a student has (in theory) used (or tutored on) a knowledge
component to solve a step in a problem. Each unique step in a problem is distinct from
other problem-solving steps. For example, in Table 2, “(POG-AREA Q1)” and “(POG-
AREA Q2)” are unique steps—they correspond to different questions in problem.
Because they both exercise the “Circle-Area” knowledge component, they are counted as



distinct opportunities for the student to demonstrate whether he or she has learned
“Circle-Area” (and if not, get instruction on it).

Figure 2. Error Rate Learning Curve with predicted values from a Geometry Area dataset.

The solid curve represents the actual values, each point an average across all students and
knowledge components for the given opportunity.  The dashed curve represents the
predicted curve values, based on the Learning Factor Analysis (LFA) algorithm [5].
Built-in statistical models measure student proficiency, knowledge component difficulty,
and knowledge component learning rates. This algorithm allows for search and
comparison of alternative knowledge component or cognitive models.  DataShop
supports users in entering multiple hypothesizes about how student knowledge and
learning may be decomposed.

2.2 Importing and Exporting Learning Data

Data may be imported into the DataShop repository through XML or a tab-delimited text
file format.  Logging to DataShop XML provides the richest and most complete data.  If
logging via XML, tutors can send messages directly to the DataShop logging server in
real time.  Logs are automatically processed on a nightly basis, making them available for
analysis or export through the web application.  Alternatively, a computer tutor can write
XML to files on the local hard disk (for example, if the tutor is running off-line) and then
send the data to the logging server at a later time.  Data in a pre-existing log format can
also be converted to DataShop XML and then imported into the repository.  This
procedure has worked well for data collected by other tutoring systems including Andes
(www.andes.pitt.edu), math Cognitive Tutors (carnegielearning.com), REAP
(reap.cs.cmu.edu), and Assistments (assistment.org). The tab-delimited format of a
transaction table can alternatively be used to import from a preexisting source.

DataShop offers various data export options through the web application each delivered
in a tab-delimited text file.  These include transaction and student-step level exports (as
illustrated in Tables 1 & 2), and a student-problem aggregate export.



2.3 Analysis & Visualization Tools

The DataShop web application provides several tools to assist with analyzing and
visualizing repository data.  These tools can be used in conjunction to jump-start data
analysis: one can determine if students are learning by viewing learning curves, then drill
down on individual problems, knowledge components, and students to analyze
performance measures.

The following DataShop tools are available:
• Dataset Info: provides dataset metrics, contextual information, quick statistics

(number of students, transactions, knowledge components, etc.) as well as papers,
files, a problem table, and exporting and importing knowledge component models.

• Performance Profiler: multi-purpose tool that visualizes student performance across
various dataset-specific domains (problem, step, curriculum level, knowledge
component and student) and measures of performance (error rate, assistance score,
average number of incorrects, average number of hints, and residual error rate).

• Error Report: presents each student’s first attempt at a problem or knowledge
component, including if he or she was correct, the number of students or
observations, and the text of the student’s answer.

• Learning Curve: visualizes student learning changes over time.  Learning curve types
include error rate, assistance score, correct step time, and others. The Learning
Factors Analysis model [6] provides predicted values for error rate learning curves.

3 Uses of PSLC’s DataShop

As indicated above, many recent analyses of data from DataShop have been performed in
a variety of domains.  A number of other studies have used, tested or extended the
analysis techniques employed in DataShop including investigations in reading [10],
Physics [12], and Geometry [15].  Often analyses have been targeted at finding ways to
improve student learning.  In some cases, the work has been taken full circle such that an
analysis led to an instructional redesign that was demonstrated to improve student
learning beyond that realized by the original instruction. We provide a couple examples.

Cen, Junker, and Koedinger [6] performed a learning curve analysis using the Learning
Factors Analysis (LFA) algorithm based on data from the Area unit of the Geometry
Cognitive Tutor.  They noticed that while students were required to over-practice some
easy target knowledge components or skills (see square-area in Figure 2), they under-
practiced some harder skills (see trapezoid-area in Figure 2).  Based on observation and
further analysis, they created a new version of the geometry tutor by resetting parameters
that determine how often skills are practiced.  They ran a classroom experiment where
students in a course were pre- and post-tested and randomly assigned to use either the
previous or the new tutor version.  Students using the new version took 20% less time to
finish the same curriculum units (because over-practice was eliminated) and learned just
as much as measured by normal, transfer, and long-term retention tests.



A second demonstration of a datamining project that “closed the loop” is work by Baker
et al. [3], who had done formal observations of student behavior in computer labs while
working through lessons of a middle school math Cognitive Tutor.  Among a number of
categories of off-task or otherwise disengaged behavior, he found that “gaming the
system” had the largest correlation with poor learning outcomes.  Gaming refers to
student behavior that appears to avoid thinking and learning through systematic guessing
or fast and repeated requests for increasing help.  Baker used machine learning
techniques to build a “detector” capable of processing student log information, in real
time, to determine when students were gaming.  The detector became the basis for an
intervention system, a “meta tutor”, designed to discourage gaming and engage students
in supplementary instruction on topics they had gamed.  A controlled experiment
demonstrated student-learning benefits associated with this adaptive selection of
supplementary instruction for students observed to be gaming.

4 Discovering better cognitive and affective models of student learning

An important general use of this kind of data is to drive the development of more precise
computational models of human cognition, motivation, and learning. The work on
gaming is just one example of using interaction log data to assess and remediate student
motivation and other detectors of student engagement are possible.

With respect to cognitive and learning assessment, we have been pursuing a strong
hypothesis that the correct representation of knowledge (facts, skills, concepts, strategies,
integrative models or schemas, meta-knowledge, etc.) in a domain is an empirical
question.  Why is this a strong claim?   First, many do not believe knowledge is
decomposable, for instance, Barab and Squire say “learning, cognition, knowing, and
context are irreducibly co-constituted and cannot be treated as isolated entities or
processes” [4].  Second, most designers of instruction, like textbook authors, assume that
the instructional designers determine the knowledge decomposition, the target concepts
and skills, and students learn these knowledge components as they are taught.  In
contrast, the PSLC takes the position that the nature and grain size of mental knowledge
representation is driven as much or more by the student and the explicit and implicit
learning mechanisms in which they and their brains engage. Others, too, have
emphasized that students do not learn knowledge in pieces as they are taught [7]. If the
nature of human knowledge representation is an empirical question, then we need both
vast and detailed educational data and associated data processing algorithms to answer
this question for all domains of academic learning.

In addition to the LFA technique mentioned above, which employs the “smooth learning
curve” criteria [13], a number of algorithms have been created for empirically evaluating
knowledge representations against student performance data including the rule space [18]
and knowledge space [8] approaches.  The collection and use of on-line learning data will
further drive such developments.  As noted in a major national report “psychometric
validation of [on-line] assessments is needed so they can be compared with conventional
assessments, and complement and ultimately supplant them” [1].



5 Conclusion

We described PSLC’s DataShop, an open repository and web-based tool suite for storing
and analyzing click-stream data, fine-grained longitudinal data generated by online
courses, assessments, intelligent tutoring systems, virtual labs, simulations, and other
forms of educational technology. In contrast to other types of educational data such as
video and school-level data, data in DataShop includes a rich set of semantic codes that
facilitate automated analysis and meaningful interpretation.

The PSLC DataShop uniform data format is an initial attempt to develop a common
standard that we hope will be useful to field if not as is, then in driving better or more
useful common standards.  In addition to being a source for learning data, it is also a
place where researchers can deposit data and then get help from other researchers who
can perform secondary analysis on this data.

DataShop allows free access to a wide variety of data sets and analysis tools.  These tools
help researchers visualize student performance, difficulties, and learning over time.  Such
analyses can lead to demonstrably better instructional designs.  The data can also drive
improved models of student cognition, affect, and learning that can be used to improve
on-line assessment and on-line learning. We take as a premise that the human brain
constructs knowledge based a variety of input sources (e.g., verbal, visual, physical) and
in a fashion and at a grain size that may or may not conform to the structure as conceived
by an instructor or domain expert.  In other words, the nature and content of human
knowledge representation is a deep and important scientific question, like for instance,
the nature of the human genome.  To answer this question requires a vast collection of
relevant data, associated analysis methods and new theory.
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