
Mining the Structure of Tag Spaces for User Modeling

Eric Schwarzkopf, Dominik Heckmann, Dietmar Dengler, and Alexander Kröner

German Research Center for AI (DFKI)
66123 Saarbruecken, Germany
Firstname.Lastname@dfki.de

Abstract. We propose an approach for using data from a social tagging application
like del.icio.us as a basis for user adaptation. We discuss several algorithms for
mining taxonomies of tags from tag spaces. The mined taxonomy can be used to
define adaptation rules that determine how to adapt a system to a user given the
user’s personal tag space.
The contributions of this work are a description of an application scenario for taxonomy-
mining algorithms, a discussion of algorithms by Mika[3], Heymann et al.[2], and
Schmitz et al.[4], and the proposal of an extension to the algorithms that takes the
contexts of tags into account when building a taxonomy. We look at the performances
of the algorithms on a dataset retrieved from del.icio.us and give a tentative rec-
ommendation of what algorithm to use.

1 Introduction

Tag spaces are an obvious source of data for user modeling. The user of a social tagging tool
could provide access to his personal tag space to an e-commerce site which could use the
data to tailor its structure and presentation to the user. For example, a book store could
determine that a customer who uses the tags code, java, and mysql frequently is most likely
a programmer and recommend the most popular programming books.

How can we use a tag space and a user’s tagging data to create a user model and adapt a
system? The first step in the approach we are proposing is mining a taxonomy of tags from
the tag space. The system engineer then creates a set of application-specific adaptation rules
based on the mined taxonomy. Finally, a user’s personal tags are mapped into the taxonomy
to determine which adaptation rules apply to the user. This process is depecited in figure 1.

Not all tag spaces are suitable for this type of user modeling. Because we want to learn
something about the user’s interests, we require tagging data used by the user for himself
(as in del.ico.us) and not for others (as in flickr).

In a taxonomy of tags, subtags of a tag are specializations of the tag (for example, pop-
music should be a subtag of music). Given a taxonomy of tags, we can compute a value
for the association between a user u and a tag t by computing the similarity between the
set of tags used by u and the set containing t and all of t’s subtags by using, for example,
Jaccard’s coefficient. For the designer of an adaptive system a taxonomy simplifies identifying
the semantics of a tag (by using its predecessors and successors as context) and its generality
(the higher it is in the taxonomy, the more users will be associated with it). Hence, we think
a taxonomy is a good underlying structure for the task at hand.

Mining a taxonomy from a tag space is the main subject of this paper. We will look
at several taxnonomy-mining algorithms proposed in the literature, evaluate their perfor-
mance on a dataset retrieved from del.icio.us, and, based on our results, give a tentative
recommendation of what algorithm to use when mining taxonomies.

We do not focus on privacy issues in this paper, but since they are of special relevance
in this domain, we provide some ideas that can be implemented easily on top of existing
tagging systems. To limit the possibility of misuse, the user should restrict access to his data.
To that end, a user could maintain several profiles, where a profile is a subset of the user’s
tagged resources. For instance, there could be a job profile for data collected in the user’s
professional role and a personal profile for data related to the user’s hobbies. There are a
number of ways to create profiles easily — and it has to be easy because otherwise the user

2

Fig. 1. Overview of the adaptation process.

could just as well fill in a questionnaire to create his profile. One is to associate a specific
tag with a profile, so that all entries using the tag are automaticaly assigned to the profile.
For each profile, the user should be able to create a snapshot in time, for example, resources
tagged within the previous two weeks, and to provide only this snapshot to a third party
system. Current tagging system only provide for an all or nothing decision: Once a third
party knows the account name of the user, it can retrieve all current and future data in that
account. But by using the APIs offered by most social tagging services, it is possible to create
the described profile service even without modifying the existing services (for example, by
building upon a user+tag RSS feed from del.icio.us).

2 Mining Taxonomies

2.1 Test Data

To gain some experience with the algorithms discussed below, we applied them to data
retrieved from del.icio.us. We collected 2553 account names by periodically polling the
RSS feed of recent additions and then downloaded for each account the 100 most recently
added bookmarks with the associated tags, resulting in a set of 125801 distinct bookmarks,
158870 user-bookmark pairs (most users had collected less than 100 bookmarks), 23334
shared bookmarks (bookmarks collected by more than one user), and 37697 distinct tags.

The approach taken to sampling accounts resulted in a set of users with diverse interests
but low overlap in annotated bookmarks. These characteristics have to be taken into account
when interpreting the results of our experiments.

2.2 Estimating the Quality of a Taxonomy

In order to compare the performance of the taxonomy-mining algorithms, we need some
kind of measure of the quality of the mined taxonomies. For this paper, we use the structure
of a taxonomy to assess their quality: Given the characteristics of our test data, we assume

3

that a taxonomy is of low quality if its maximum depth is larger than 5 or most of the tags
are on the first level of the taxonomy. A depth larger than 5 indicates that a large number
of users have a common, very specific interest, while a flat taxonomy indicates that there
are only very few subsumption relationships between tags. Both conditions are very unlikely
for our dataset, and manual inspection of some of the mined taxonomies confirmed that an
average depth of 3 with most of the tags on levels 1 and 2 is to be expected of a high-quality
taxonomy.

The appendix lists the structure of taxonomies generated by the discussed algorithms
with different parameter settings.

2.3 Algorithms

Before talking about algorithms for learning taxonomies, we define formally what we mean
by a tag space. The following definition is adopted from Mika [3] and is used throughout
the subsequent discussion.

A tag space is a hypergraph H :=< V,E >. The set of vertices V is the union
of three disjoint sets A, C, and I representing the set of users (actors), the set of
tags (concepts), and the set of annotated objects (items). E is the set of ternary
edges {{a, c, i} |user a labels object iwith tag c}.

Our intention is to discover subsumption relationships between tags as seen by the user
community. We say a tag t subsumes a tag u if and only if the intension of t properly contains
the intension of u. That is, t subsumes u if all imaginable objects that could be sensibly
tagged with u can also be sensibly tagged with t.1

Mika [3] looks at the weighted graphs Oac :=< C,Eac, wac >, where C is the set of
tags, Eac := {(x, y) |x, y ∈ C,∃a ∈ A∃i, j ∈ I : {a, x, i}, {a, y, j} ∈ E}, wac((x, y)) :=
|{a ∈ A | ∃i, j ∈ I : {a, x, i}, {a, y, j} ∈ E}|, and Oic :=< C,Eic, wic >, where Eic :=
{(x, y) |x, y ∈ C,∃i ∈ I ∃a, b ∈ A : {a, x, i}, {b, y, i} ∈ E} and wic((x, y)) := |{i ∈ I | ∃a, b ∈
A : {a, x, i}, {b, y, i} ∈ E}|. That is, Oac is the graph of tags in which an edge between
two tags is weighted by the number of people who have used both tags, while Oic is the
graph of tags in which an edge is weighted by the number of resources that have been tagged
with both tags. Mika suggests using Oic for concept mining by applying graph clustering;
he reports mining cohesive groups of concepts from del.icio.us data using α-set analysis.
Because Oic does not reflect how popular tags are in the user community (local structure
can be determined by very few users), he uses Oac to discover taxonomic relationships
between tags using a set-theoretic approach that corresponds to mining association rules as
is described further below when we look at the approach proposed by Schmitz et al.[4]. The
idea is that the community of users associated with a narrower tag is a sub-community of
the community associated with the broader tag.

Heymann at al.[2] create for each tag t a vector representation vt := (w(t, i))i∈I , where
w((c, i)) := |{a | (a, c, i) ∈ E}|, and then define a tag similarity graph S :=< C,Es >, where
Es := {(a, b) | a, b ∈ C, cos(va, vb) > d} with cos denoting the cosine similarity and d a
predefined threshold. Note that in general, S does not correspond to Mika’s Oic, because
the latter uses the overlap in tagged resources to determine the weight of an edge while the
cosine similarity measures how similar the distribtions of tags are over all resources.

To create a taxonomy of tags, they first sort the tags in non-increasing order of their
closeness-centrality in the similarity graph. Closeness-centrality of a node ni is defined as
the inverse of the total distance that ni is from all other nodes: (

∑g
j=1 d(ni, nj))−1, where

d is the geodesic distance between ni and nj .2 They then start with an empty taxonomy,
1 We assume here that there is a one-to-one correspondence between semantic concepts and tags,

which is, as Mika points out, incorrect.
2 Why a centrality measure for identifying general tags and not a more efficiently computed, local

measure such as the degree of a node? A node far down in the taxonomy can have a large local
connectivity (for example, a node pointing to a large number of leafs), but its centrality will be
low because the distance to most of the nodes in the taxonomy will be high.

4

which contains only a root node not associated with a tag, and add each tag in turn starting
from the most central. A tag is added as a child of either the tag it is most similar to if the
similarity is above a threshold or the root node.

 programming
 development
 php
 code
 java
 mobile
 rails
 ruby
 rubyonrails
 python
 c
 net

 web
 tool
 resource
 list
 toread
 article
 link
 software
 computer
 hardware
 opensource
 linux
 ubuntu
 wiki
 freeware
 utilities
 windows
 microsoft

web20
 community
 social
 forum
 business
 marketing
 advertising
 seo
 money
 finance
 ajax
 javascript
 rss
 xml

(a) (b) (c)

Fig. 2. Parts of a taxonomy created using the algorithm by Heymann et al. on the test data. Trees
(b) and (c) suggest problems with contextual similarity: ubuntu is related to linux, but it is not
obvious why both are subtags of web.

Heymann et al. base their approach on three assumptions: (1) the relationships in the
taxonomy also exist in the similarity graph, (2) there are noisy connections between tags
that have no matching connection in the taxonomy (hence, the edges in the similarity graph
are a superset of the edges in the taxonomy), and (3) noisy connections are more common
higher up in the hierarchy (that is, for more general tags).

Their algorithm further assumes that all tags are part of a taxonomy. This is a simplifying
assumption because in general only a subset of tags is used for denoting the categories of
resources [1]. Furthermore, the algorithm does not take the context of a parent tag into
account when adding a child: The similarity between a tag and its potential parent in the
taxonomy does not depend on the ancestors of the parent. This results in chains such as
design→web→howto→productivity→business in which each link seems to make sense but
the complete chain does not.

Applied to our test data, this context agnostic assignment results in a poorly structured
taxonomy: Depending on how the similarity thresholds are chosen, the taxonomy is either
too flat, with a large number of tags not having any children, or a single tag being the root of
a deep tree containing most of the other tags, with a large number of tag chains not making
sense (see figure 2).

A simple way to take the context into account is to require from a tag that is has a
certain minimum average similarity to all predecessors of the parent. We add this test to
the original algorithm after the tag p in the taxonomy that is most similar to the tag t to
be inserted is determined. If the average similarity between t and the predecessors of p is

5

below a given threshold, a copy pc of p is added as a new top-level node to the taxonomy
and t is made a child of pc.

Applied to our test data, the extended algorithm leads to taxonomies without intuitively
incorrect chains, but the overall structure is in general too flat (see figure 3).

(a) (b) (c)

programming
 code
 java
 rails
 ruby
 python
 c
 net

web
 tool
 resource
 list
 web20
 design
 internet
 imported
 webdev
 work

web20
 community
 social
 business
 ajax
 rss

Fig. 3. Parts of a taxonomy created using Heymann’s algorithm modified to take the context of
tags into account.

Another approach is proposed by Schmitz et al.[4]. They mine from a tag space asso-
ciation rules of the form If users assign the tags from X to some resource, they often also
assign the tags from Y to them. If resources tagged with t0 are often also tagged with t1 but
a large number of resources tagged with t1 are not tagged with t0, t1 can be considered to
subsume t0.

Formally, Schmitz et al. learn association rules over the set T := {{i | {a, c, i} ∈ E} | a ∈
A, c ∈ C}. Here, an association rule is a tuple in 2I \ ∅× 2I \ ∅. Whether an association rule
(X,Y) is of interest or not can be determined by thresholds on its support supp(X,Y) :=
|{U ∈ T |X ⊂ U, Y ⊂ U}| / |T | and its confidence conf(X,Y) := |{U ∈ T |X ⊂ U, Y ⊂
U}| / |{U ∈ T |X ⊂ U}|.

The cosine similarity measure used by Heymann et al. does not take into account the
total count of occurences of a tag because tag vectors are being normalized. For instance,
the vector (1, 2, 3) is more similar to (100, 180, 250) than (100, 180, 250) is to (50, 150, 200),
although intuitively the latter pair should be more similar in respect to the corresponding
tags’ positions in the taxonomy.

In contrast, association rules reflect the frequencies of subsets. Assume we have got
tags t1, t2, t3 with the same distributions as used in the discussion of cosine similarity
vt1 = (1, 2, 3), vt2 = (100, 180, 250), and vt3 = (50, 150, 200), and that the resources tagged
with t1 and t3 are proper subsets of the resources tagged with t2. Then conf((t2, t1)) = 6 / 530
and conf((t2, t3)) = 400 / 530. Hence, there is a stronger relationship between t2 and t3 than
t2 and t1.

Schmitz et al. do not describe how a taxonomy can be created from the mined rules. One
possible approach is the following: Given the set R of interesting association rules in I × I
(that is, associations between single tags), we can define a graph AR :=< V ar,Ear, war >,
where Var := {i ∈ I | ∃j ∈ I : (i, j) ∈ R or (j, i) ∈ R}, Ear := {(x, y) | (y, x) ∈ R},
war((x, y)) := conf((y, x)). We then create the graph AR′ by keeping for each node y only
the incoming edge (x, y) with the strongest weight war((x, y)). AR′ is a forest, and a single

6

tree (the taxonomy) can be created by introducing a new node r (the root of the taxonomy)
and connecting it to all existing root nodes in the forest.

This algorithm, like the algorithm by Heymann et al., assumes that there is a one-to-one
correspondence between tags and concepts, does not attempt to distinguish the different
uses of tags, and ignores the context of a tag in the taxonomy.

Overall, we get better results on our test data with association rules than with Heymann’s
algorithm, but we observe similar issues in respect to the context of tags (see 4).

(a) (b) (c)

blog
 blogging
 technology
 tech
 new
 politic
 business
 startup
 management
 marketing
 advertising
 seo
 wordpress
 plugin
 themes
 culture
 daily
 rss
 feed

 programming
 tutorial
 howto
 hack
 diy
 tip
 photoshop
 ruby
 rubyonrails
 rails
 php
 mysql
 net
 api
 framework
 c
 python

 web
 browser
 directory
 internet
 link
 accessibility
 web20
 social
 community
 collaboration
 website

Fig. 4. Parts of a taxonomy created using the assocition-rule algorithm.

We can extend the algorithm to take the context into account by requiring that there
is an edge from a tag to all of its subtags in AR. For each root in AR′, we traverse the
corresponding tree. If we reach a tag that is not adjacent to the root in AR, we make a copy
of its parent in AR′ a new root and continue traversal. This corresponds to the modification
we made to Heymann’s algorithm.

2.4 A Tentative Recommendation

For our set of test data and implementations, the association-rule algorithm and its exten-
sion generated better taxonomies than Heymann’s algorithm for a relatively wide range of
parameters. The appendix lists structural features of taxonomies mined by the algorithms
using several sets of parameter values. The ‘better’ structural features (see above) of the
association-rule algorithms further support the impression we got from manual inspection
of a sample of taxonomies.

7

(a) (b) (c)

blog
 blogging
 technology
 tech
 news
 politic
 business
 marketing
 wordpress
 culture
 daily
 rss

web
 browser
 directory
 internet
 link
 accessibility
 web20

programming
 tutorial
 ruby
 rubyonrails
 rails
 php
 net
 api
 framework
 c
 python
 reference
 database
 language
 java
 code
 c#
 xml

Fig. 5. Parts of a taxonomy created using the assocition-rule algorithm modified to take the context
of tags into account.

3 Mapping User Interests

Given a taxonomy of tags, we need to identify which of those tags best describe the interests
of a user so we can apply the appropriate adaptation rules. We do this by computing the
similarity between sets of tags: We represent a tag of the taxonomy by the set containing
the tag and all of its subtags. Jaccard’s similarity coefficient, defined as the ratio between
the size of the intersection of two sets and the union of those sets, |A∩B| / |A∪B|, is used
to determine how strongly the user, represented by the intersection of his tags with the set
of all tags of the taxonomy, is associated with a specific tag of the taxonomy.

For example, one user in our dataset uses the following tags:

wiki code firefox cc blogger mysql hardware webstv wordpress own search mp3 linux css
nba hacker zooomr bloglines java network service bittorrent bookmark vbscript lyrics perl blog
teacher book crack teaching net irc homepage album asp assembly dictionary clubbox web20
tool javascript notepad yahoo wargames diagram xml game lifelype proxy regexp translation
php ruby security foobar2000 decompiler p2p audio embedded forum database mobile eclipse
html server bbs fju freebsd encryption movie sniffer ide maplebbs portalsite pda software

If we map this set to a taxonomy mined using the association-rule algorithm, we learn
that the user is strongly associated with the concepts programming, security, and software.
Note that an interest for programming is not explicit in the user’s tags, but inferred using
the mined taxonomy.

8

4 Things We Ignored

The presented approaches to mining taxonomies from tag spaces ignore a number of issues
relevant to our application domain:

dynamics: How tags are used changes in time. For example, a tag specialization might be
introduced that describes a subset of the tagged resources better and thus replaces a
more broader tag, or a tag for an entirely new and popular concept might be introduced.
This dynamics will affect adversly the quality of the mapping of user interests to the then
out-of-date tag taxonomy. An ideal system would adapt the taxonomy to any changes
so manual maintenance of the taxonomy or the adaptation rules would not be necessary.

not a 1-to-1 mapping between tags and concepts: As Mika points out, a concept might
be represented not by a single but by a set of several tags. This suggests that the quality
of the learned structure of the tag space can be improved if the simplifying assumption
of a 1-to-1 mapping is dropped.

different uses of tags: Tags can be used in different functions. In addition to denoting
categories and subcategories, they can describe the content, type, and owner of a re-
source, the opinion of the tagger, what to do with a resource (“toread”), or the relation
to the tagger (“mycomments”) (see Golder et al.[1]). Distinguishing between the different
functions should improve the learned structure of the tag space.

polysemy, synonymy: All presented approaches ignore polysemy and synonymy in the
tag space. This leads to a reduction in quality of the learned structure because the
quantitative relationships between concepts are misrepresented.

5 Conclusion

We have begun exploring an application scenario in which data from a tag space is used to
adapt a system to an individual user. Algorithms and approaches in this domain are still in
their infancy, and with lots of relevant data available on the web and its potential usefulness
(not only in the mentioned e-commerce scenario), we see it as a promising area of research.

References

1. Scott A. Golder and Bernardo A. Huberman. Usage patterns of collaborative tagging systems.
J. Inf. Sci., 32(2):198–208, April 2006.

2. Paul Heymann and Hector Garcia-Molina. Collaborative creation of communal hierarchical
taxonomies in social tagging systems. Technical Report 2006-10, Stanford University, April
2006.

3. Peter Mika. Ontologies are us: A unified model of social networks and semantics. In International
Semantic Web Conference, volume 3729 of Lecture Notes in Computer Science, pages 522–536.
International Semantic Web Conference 2005, Springer, November 2005.

4. Christoph Schmitz, Andreas Hotho, Robert Jäschke, and Gerd Stumme. Mining association rules
in folksonomies. In V. Batagelj, H.-H. Bock, A. Ferligoj, and A. iberna, editors, Data Science
and Classification, Studies in Classification, Data Analysis, and Knowledge Organization, pages
261–270, Berlin, Heidelberg, 2006. Springer.

9

A Structural Features of Mined Taxonomies

edge sim parent sim #taxa max depth #lvl1 #lvl2 #lvl3 #lvl4 #lvl5

0.05 0.02 489 13 2 16 41 76 98
0.05 0.04 489 13 2 16 41 76 98
0.05 0.06 489 13 16 22 44 76 95
0.05 0.08 489 11 40 25 44 75 91
0.05 0.10 489 11 85 33 40 71 83
0.05 0.12 489 10 134 59 51 72 62
0.05 0.14 489 10 178 67 51 59 48
0.05 0.16 489 9 209 72 62 57 35
0.05 0.18 489 8 238 79 61 46 29
0.05 0.20 489 8 265 90 57 39 18
0.05 0.22 489 8 293 89 50 31 15
0.05 0.24 489 5 324 88 48 20 9
0.05 0.26 489 5 349 75 39 19 7
0.05 0.28 489 5 367 69 33 16 4
0.05 0.30 489 5 386 67 29 6 1
0.05 0.32 489 4 402 60 23 4 0
0.05 0.34 489 4 414 55 18 2 0
0.05 0.36 489 3 424 48 17 0 0
0.05 0.38 489 3 430 46 13 0 0
0.05 0.40 489 3 441 38 10 0 0
0.1 0.02 427 15 8 11 10 11 23
0.1 0.04 427 13 13 21 29 30 47
0.1 0.06 427 13 13 21 29 30 47
0.1 0.08 427 13 13 21 29 30 47
0.1 0.10 427 13 13 21 29 30 47
0.1 0.12 427 11 65 43 42 41 53
0.1 0.14 427 11 115 62 38 32 44
0.1 0.16 427 11 147 63 50 28 29
0.1 0.18 427 11 175 65 47 24 27
0.1 0.20 427 11 201 82 45 19 20
0.1 0.22 427 8 232 86 46 17 16
0.1 0.24 427 8 261 88 38 15 10
0.1 0.26 427 8 285 77 31 11 9
0.1 0.28 427 8 306 71 24 8 8
0.1 0.30 427 7 326 70 20 5 3
0.1 0.32 427 7 339 62 17 4 2
0.1 0.34 427 6 351 55 14 4 2
0.1 0.36 427 5 362 47 15 2 1
0.1 0.38 427 5 368 44 12 2 1
0.1 0.40 427 4 378 38 10 1 0

Table 1. Results of Heymann’s algorithm applied to the test data. edge sim is the minimum
similarity required for an edge to be created between two tags in the similarity graph. parent sim
is the minimum similarity required for a tag to become the child of a taxon.

10

edge sim parent sim context sim #taxa max depth #lvl1 #lvl2 #lvl3 #lvl4 #lvl5

0.05 0.02 0.02 601 10 114 186 73 63 63
0.05 0.02 0.04 655 8 168 301 71 49 33
0.05 0.02 0.06 685 7 198 377 61 34 10
0.05 0.02 0.08 700 6 213 412 47 21 6
0.05 0.02 0.10 709 4 222 439 38 10 0
0.05 0.02 0.12 718 4 231 457 25 5 0
0.05 0.02 0.14 719 4 232 469 15 3 0
0.05 0.02 0.16 720 3 233 476 11 0 0
0.05 0.02 0.18 721 3 234 481 6 0 0
0.05 0.02 0.20 722 3 235 483 4 0 0
0.05 0.04 0.02 601 10 114 186 73 63 63
0.05 0.04 0.04 655 8 168 301 71 49 33
0.05 0.04 0.06 685 7 198 377 61 34 10
0.05 0.04 0.08 700 6 213 412 47 21 6
0.05 0.04 0.10 709 4 222 439 38 10 0
0.05 0.04 0.12 718 4 231 457 25 5 0
0.05 0.04 0.14 719 4 232 469 15 3 0
0.05 0.04 0.16 720 3 233 476 11 0 0
0.05 0.04 0.18 721 3 234 481 6 0 0
0.05 0.04 0.20 722 3 235 483 4 0 0
0.05 0.08 0.02 577 10 128 154 70 62 62
0.05 0.08 0.04 629 8 180 265 70 49 32
0.05 0.08 0.06 661 7 212 339 61 34 10
0.05 0.08 0.08 676 6 227 374 47 21 6
0.05 0.08 0.10 685 4 236 401 38 10 0
0.05 0.08 0.12 694 4 245 419 25 5 0
0.05 0.08 0.14 696 4 247 431 15 3 0
0.05 0.08 0.16 698 3 249 438 11 0 0
0.05 0.08 0.18 699 3 250 443 6 0 0
0.05 0.08 0.20 700 3 251 445 4 0 0
0.05 0.16 0.02 513 9 233 101 59 48 32
0.05 0.16 0.04 540 8 260 139 58 42 17
0.05 0.16 0.06 558 6 278 178 57 35 6
0.05 0.16 0.08 573 6 293 204 48 20 5
0.05 0.16 0.10 587 5 307 229 36 13 2
0.05 0.16 0.12 597 4 317 249 24 7 0
0.05 0.16 0.14 599 4 319 257 17 6 0
0.05 0.16 0.16 605 3 325 269 11 0 0
0.05 0.16 0.18 607 3 327 274 6 0 0
0.05 0.16 0.20 608 3 328 276 4 0 0

Table 2. Results of the extension of Heymann’s algorithm applied to the test data. edge sim is the
minimum similarity required for an edge to be created between two tags in the similarity graph.
parent sim is the minimum similarity required for a tag to become the child of a taxon.

11

edge sim parent sim context sim #taxa max depth #lvl1 #lvl2 #lvl3 #lvl4 #lvl5

0.1 0.02 0.02 506 13 87 129 61 26 34
0.1 0.02 0.04 554 9 135 217 61 27 28
0.1 0.02 0.06 583 9 164 284 63 21 13
0.1 0.02 0.08 603 8 184 343 41 15 5
0.1 0.02 0.10 613 8 194 370 26 10 5
0.1 0.02 0.12 618 8 199 390 19 3 2
0.1 0.02 0.14 622 6 203 400 12 5 1
0.1 0.02 0.16 625 5 206 409 6 3 1
0.1 0.02 0.18 625 5 206 411 5 2 1
0.1 0.02 0.20 625 5 206 412 4 2 1
0.1 0.04 0.02 500 13 86 123 61 26 34
0.1 0.04 0.04 548 9 134 211 60 27 28
0.1 0.04 0.06 577 9 163 279 63 21 13
0.1 0.04 0.08 597 8 183 339 42 13 5
0.1 0.04 0.10 607 8 193 366 27 8 5
0.1 0.04 0.12 612 8 198 385 19 3 2
0.1 0.04 0.14 616 6 202 395 12 5 1
0.1 0.04 0.16 619 5 205 404 6 3 1
0.1 0.04 0.18 619 5 205 406 5 2 1
0.1 0.04 0.20 619 5 205 407 4 2 1
0.1 0.08 0.02 500 13 86 123 61 26 34
0.1 0.08 0.04 548 9 134 211 60 27 28
0.1 0.08 0.06 577 9 163 279 63 21 13
0.1 0.08 0.08 597 8 183 339 42 13 5
0.1 0.08 0.10 607 8 193 366 27 8 5
0.1 0.08 0.12 612 8 198 385 19 3 2
0.1 0.08 0.14 616 6 202 395 12 5 1
0.1 0.08 0.16 619 5 205 404 6 3 1
0.1 0.08 0.18 619 5 205 406 5 2 1
0.1 0.08 0.20 619 5 205 407 4 2 1
0.1 0.16 0.02 453 11 173 89 61 29 25
0.1 0.16 0.04 474 9 194 122 62 26 20
0.1 0.16 0.06 496 8 216 159 61 20 10
0.1 0.16 0.08 512 8 232 205 46 10 5
0.1 0.16 0.10 526 8 246 233 27 8 4
0.1 0.16 0.12 533 8 253 251 19 3 2
0.1 0.16 0.14 538 6 258 261 12 5 1
0.1 0.16 0.16 543 5 263 270 6 3 1
0.1 0.16 0.18 544 5 264 272 5 2 1
0.1 0.16 0.20 544 5 264 273 4 2 1

Table 3. Results of the extension of Heymann’s algorithm applied to the test data. edge sim is the
minimum similarity required for an edge to be created between two tags in the similarity graph.
parent sim is the minimum similarity required for a tag to become the child of a taxon.

12

confidence support #taxa max depth #lvl1 #lvl2 #lvl3 #lvl4 #lvl5

0.05 0.0001 1071 8 57 129 283 285 182
0.05 0.0002 502 8 19 59 172 132 86
0.05 0.0003 344 8 13 44 125 97 47
0.05 0.0004 258 6 11 42 96 70 30
0.05 0.0005 211 6 12 37 77 58 21
0.05 0.0006 162 6 7 29 63 42 16
0.05 0.0007 133 6 7 27 50 32 12
0.05 0.0008 114 6 5 23 44 26 11
0.05 0.0009 106 6 7 26 41 20 9
0.05 0.0010 93 6 9 26 31 17 8
0.10 0.0001 1067 7 80 323 331 199 105
0.10 0.0002 499 7 33 160 173 86 40
0.10 0.0003 339 7 24 112 120 58 22
0.10 0.0004 255 6 21 89 89 41 14
0.10 0.0005 209 5 20 75 72 32 10
0.10 0.0006 157 5 12 58 53 26 8
0.10 0.0007 130 5 12 52 40 18 8
0.10 0.0008 113 5 10 48 31 17 7
0.10 0.0009 105 5 10 47 27 15 6
0.10 0.0010 92 5 12 41 22 13 4
0.15 0.0001 1037 6 115 482 304 98 34
0.15 0.0002 482 5 54 245 134 34 15
0.15 0.0003 327 5 36 170 94 18 9
0.15 0.0004 246 5 31 129 69 13 4
0.15 0.0005 201 5 29 103 57 10 2
0.15 0.0006 154 5 20 81 42 9 2
0.15 0.0007 127 5 18 67 32 8 2
0.15 0.0008 108 5 14 57 27 8 2
0.15 0.0009 101 5 14 56 22 8 1
0.15 0.0010 89 5 16 50 17 5 1
0.20 0.0001 988 6 149 576 196 56 10
0.20 0.0002 457 5 75 274 85 20 3
0.20 0.0003 309 5 52 186 58 10 3
0.20 0.0004 227 4 41 134 45 7 0
0.20 0.0005 185 4 38 108 33 6 0
0.20 0.0006 140 4 28 82 25 5 0
0.20 0.0007 114 4 23 66 21 4 0
0.20 0.0008 97 4 19 56 18 4 0
0.20 0.0009 88 4 16 51 17 4 0
0.20 0.0010 79 4 18 46 13 2 0
0.25 0.0001 903 4 170 564 131 34 4
0.25 0.0002 403 4 83 256 52 12 0
0.25 0.0003 267 4 57 168 37 5 0
0.25 0.0004 196 4 44 121 27 4 0
0.25 0.0005 159 4 40 97 19 3 0
0.25 0.0006 120 4 30 74 13 3 0
0.25 0.0007 94 4 24 58 10 2 0
0.25 0.0008 78 4 19 48 9 2 0
0.25 0.0009 71 4 17 44 8 2 0
0.25 0.0010 65 4 17 38 8 2 0

Table 4. Results of the association-rule algorithm applied to the test data.

13

confidence support #taxa max depth #lvl1 #lvl2 #lvl3 #lvl4 #lvl5

0.05 0.0001 1355 6 228 756 259 81 30
0.05 0.0002 646 5 107 362 134 34 9
0.05 0.0003 435 5 73 247 89 21 5
0.05 0.0004 331 5 62 199 54 12 4
0.05 0.0005 269 5 51 162 42 10 4
0.05 0.0006 211 5 41 127 31 9 3
0.05 0.0007 170 5 35 101 24 7 3
0.05 0.0008 145 5 30 88 18 7 2
0.05 0.0009 135 5 28 83 17 5 2
0.05 0.0010 117 5 26 70 15 4 2
0.10 0.0001 1258 5 233 794 193 34 4
0.10 0.0002 594 5 111 382 88 12 1
0.10 0.0003 399 5 74 254 63 7 1
0.10 0.0004 305 5 62 201 36 5 1
0.10 0.0005 246 5 51 162 28 4 1
0.10 0.0006 189 5 40 125 19 4 1
0.10 0.0007 154 5 35 100 14 4 1
0.10 0.0008 135 5 32 88 11 3 1
0.10 0.0009 123 5 28 81 11 2 1
0.10 0.0010 106 5 26 68 9 2 1
0.15 0.0001 1181 4 242 802 121 16 0
0.15 0.0002 548 4 113 379 52 4 0
0.15 0.0003 372 4 76 256 37 3 0
0.15 0.0004 280 4 62 192 24 2 0
0.15 0.0005 225 4 51 151 21 2 0
0.15 0.0006 175 4 39 119 15 2 0
0.15 0.0007 146 4 36 97 11 2 0
0.15 0.0008 126 4 32 84 8 2 0
0.15 0.0009 116 4 29 78 8 1 0
0.15 0.0010 100 4 27 65 7 1 0
0.20 0.0001 1087 4 240 756 79 12 0
0.20 0.0002 496 4 112 353 28 3 0
0.20 0.0003 334 4 75 238 18 3 0
0.20 0.0004 248 4 61 174 11 2 0
0.20 0.0005 199 4 51 136 10 2 0
0.20 0.0006 151 4 38 103 8 2 0
0.20 0.0007 124 4 33 82 7 2 0
0.20 0.0008 107 4 29 71 5 2 0
0.20 0.0009 99 4 27 66 5 1 0
0.20 0.0010 86 4 25 55 5 1 0
0.25 0.0001 969 4 229 668 61 11 0
0.25 0.0002 424 4 103 296 22 3 0
0.25 0.0003 281 4 70 193 15 3 0
0.25 0.0004 210 4 57 141 10 2 0
0.25 0.0005 167 4 47 109 9 2 0
0.25 0.0006 125 4 34 81 8 2 0
0.25 0.0007 97 4 27 61 7 2 0
0.25 0.0008 81 4 22 52 5 2 0
0.25 0.0009 75 4 21 48 5 1 0
0.25 0.0010 69 4 21 42 5 1 0

Table 5. Results of the extended association-rule algorithm applied to the test data.

