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Abstract.   This paper introduces an approach called learning decomposition to analyze what types of practice 
are most effective for helping students learn a skill.  The approach is a generalization of learning curve analysis, 
and uses non-linear regression to determine how to weight different types of practice opportunities relative to 
each other.  We are able to show that different types of practice differ reliably in how quickly students acquire 
the skill of reading words quickly and accurately.  Specifically, massed practice is generally not effective for 
helping students learn words, but may be acceptable for less proficient readers.  Rereading the same story is 
generally not as effective as reading a variety of stories, but might be beneficial for more proficient readers.   
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INTRODUCTION TO LEARNING CURVES AND LEARNING DECOMPOSITION 
The goal of this paper is to investigate how different types of practice affect a student’s progress in learning a 
skill.  Specifically, we present a new approach, learning decomposition, as a means to leverage fine-grained 
interaction data collected by computer tutors and present a case study of applying the technique to the domain of 
reading.  The goal is twofold:  1)  Be able to make claims that are interesting to domain researchers, and 2)  
Develop a technique for analyzing tutor log data that should generalize to other domains and tutors.  The first 
goal should not be underestimated; if we make discoveries about how students learn a domain that remain 
limited to those using computer tutors that would be an unfortunate result.  Only a small minority of students 
use computer tutors, so if we wish our research to have broad impact then finding a means of explaining our 
results to those outside of the AIED/ITS communities is essential.  To address these issues we present an 
approach that uses learning curves to measure the relative impact of various types of learning events.   
 
For tracking student performance, learning curves (e.g. (Ebbinghaus, 1885; Newell & Simon, 1972)) are a well 
established technique that provide a means for linking practice at a skill to improvements in performance.  
Recently in the AIED/ITS community, there has been work on using learning curves to try to determine how 
instruction impacts which strategy students will employ in problem solving (Koedinger & Mathan, 2004), and 
on distinguishing the impact of various versions of a computer tutor (Martin, Koedinger, Mitrovic, & Mathan, 
2005).   
 
The two most common types of learning curves are exponential and power curves.  In this paper we discuss 
exponential curves as they seem better suited to predicting individual observations (Heathcote, Brown, & 
Mewhort, 2000) and are  simpler analytically.  However, the approach we present can be trivially adapted to 
work with power curves.  The standard form of the exponential learning curve can be seen in Equation 1.  The 
free parameter A represents how well students perform on their first trial performing the skill; e is the numerical 
constant (2.718), the free parameter b represents how quickly students learn the skill, and t is the number of 
practice trials the learner has had at this skill.  This model can be solved with any non-linear regression package 
(we use SPSS 11.0).   

 

 

Equation 1.  Exponential model of practice 

The standard learning curve methodology assumes that all trials of learning a skill are equivalent.  It is not 
difficult to imagine theories that predict that certain types of practice may be more beneficial to learning than 
others.  For example, we could believe that the subject will learn better the first time he practices the skill that 
day, and later trials that same day will have less benefit for learning.  Rather than simply lumping all of the trials 
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together as t, we can create two new variables t1 and t2. The variable t1 represents the number of trials where it 
was the first time the learner practiced the skill that day; t2 represents the number of practice opportunities where 
the learner has already encountered the skill that day.  This method of factoring trials into various types of 
practice does not change the amount of prior practice to student has had; t= t1+t2 since trials are either the first 
one of the day or are not.     
 
By simply using one parameter, t, to represent the number of prior trials, learning curves assume that both types 
of practice are equally valuable and the number of both trials should simply be added together.  What if both 
types of practice are not equally valuable?  Suppose the first learning opportunity of the day is twice as valuable 
as ones that occur later in the same day.  In that case, a better summary of past student opportunities would be 
t= 2*t1+t2 as it would better fit the performance data and more fairly equate the past opportunities of a learner.  
Imagine one learner who practiced the skill 10 times on 10 different days, while a second learner practiced the 
skill twice a day for 5 separate days.  The classic model would have both learners with t=10; this refined model 
would describe the first learner as having 20 units of practice and the second learner as 15.  If the first practice 
opportunity of the day really is twice is good then this refined description of practice is better.   
 
The basic idea of learning decomposition is to find how to weight two types of trials to construct a best fitting 
learning curve.  Equation 2 shows a learning curve model designed to find how to weight the two types of 
practice.  Similar to standard learning curves, we estimate the A and b parameters.  However, we also estimate a 
new parameter,β, that represents the relative impact of the first trial of a day relative to trials occurring later in 
the same day.  Note that t2 does not receive a weight of its own, as it is assumed to be worth 1.0 trials.  That t2 
has this implicit weight does not affect the conclusions we draw from the model as our goal is only to estimate 
relative efficacy the two types of practice.  I.e. if we assumed that t2 had a weight of 1.0 and found that β was 
2.0, then if we had instead assumed that t1 had a weight of 1.0 we would have found that β was 0.5.  Both results 
are equivalent ways of stating that practice of the first type is twice as valuable as practice of the second type.   

 

 

Equation 2.  Learning decomposition model of practice 

The parameter β is very interpretable: it is how many trials learning opportunities that are characterized as t1 are 
worth relative to those characterized as t2.  If β>1 then trials of type t1 are better for learning than those of type 
t2.  If β<1 then the opposite is true, and if β=1 then neither trial type is preferable.  Although the example 
presented is about first practice opportunity of the day vs. later ones, it is possible to split the data in any way 
that may be interesting.  We could split trials by ones that occur on Monday, Wednesday, or Friday vs. those 
that occur on Tuesday and Thursday (assuming no trials on weekends).  For this decomposition we would 
hopefully get β≈1, as we have no reason to believe the day of the week matters for learning.  Thus, the technique 
of learning decomposition is very broad.  All it requires is some way of splitting the data into two or more 
disjoint sets that encompass all of the data.   
 
The remainder of this paper explores applying learning decomposition to answer some questions about how 
children acquire reading skills.  However, the approach itself is applicable to a variety of learning tasks and 
possible ways to decompose learning.   

A CASE STUDY:  APPLYING LEARNING DECOMPOSITION TO THE DOMAIN 
OF READING 
The goal of this case study is to show how to apply learning decomposition to an actual data set and draw 
scientifically useful conclusions.  There are a variety of decisions to be made about how to approach our data; 
some of those decisions are principled, some are informed guesses, and others are little more than a hunch.   
 
We now describe the data set we use for our case study; show how we integrate student help, speed, and 
correctness into a single outcome measure of learning; explain what we believe constitutes a learning 
opportunity for a word; and finally show how we decomposed the learning opportunities into their component 
parts.   
 
We are trying to better understand how students learn how to read by analyzing performance data about 
individual words recorded by the Reading Tutor (Mostow & Aist, 2001) during the 2003-2004 school year.  
Rather than have explicit experimental and control groups, our approach is to examine how student progress in 
reading words quickly and accurately varies based on which type of practice he has had at the word.  These data 
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include 650 students, mostly from the Pittsburgh area, attempting to read 6.9 million words.  Students used the 
tutor from September 2003 through May 2004 with a median usage of 5.9 hours, and improved their fluency 
from an average of 35 words per minute to an average of 62 words per minute read correctly as measured by a 
human scored paper test.   
 
The student readings were scored by an automated speech recognizer (ASR).  The ASR is far from perfect, and 
for that year detected approximately 25% of student misreadings and scored 4% of student correct readings as 
incorrect (Banerjee, Beck, & Mostow, 2003).  The ASR also records how long students took to read a word.  
Our general logging mechanism also records when students request help.  Furthermore, all entries are time 
stamped so we know the relative temporal relations between events.   

Creating an outcome to measure learning 
Given that we are investigating how students learn to read words by using learning decomposition, we must still 
decide what to consider an outcome variable.  That is, what automatically collected marker should we use to 
track student reading development?   
 
There are a variety of approaches for representing student performance at reading fluency.  Students improve at 
reading in a variety of ways:  they read words more quickly, read with fewer mistakes, ask for less help, and 
have appropriate prosodic inflection.  Since we are only able to measure the first three of these items, we focus 
on those to measure progress.  We choose to model the student’s reading time since it is a continuous variable 
and best able to track student progress; help requests and accuracy are binary and so cannot improve smoothly.  
Although it is possible to aggregate help requests and accuracy to create a continuous learning curve, we did not 
perform such aggregations as one goal of the research is to use individual observations (rather than aggregate 
descriptions) to construct our learning curves.  It is a known potential pitfall that aggregate learning curves may 
not describe the learning trajectory of actual individual learners.  In fact, the conditions under which the learning 
curve of the population is of the same form as curves for individuals is quite restricted (Brown & Heathcote, 
2003).  Therefore, fitting individual data points can produce a more authentic model of student learning.  It is 
important to keep in mind that fitting individual data points tends to result in a poorer model fit than fitting a 
curve to student aggregate performance (since the aggregation smoothes out noise in the data).   
   
Although reading time is continuous, it is misleading to use it as an outcome and ignore accuracy and help 
requests.  Imagine one student who always asks for help when he encounters a challenging word and then 
mimics the tutor.  This student would have a low reading time and would appear to be doing well.  Then 
imagine a second student who pauses and tries to work the word out for himself.  This student would not appear 
to be doing as well even though both students could have equal proficiency at reading.  Therefore, some means 
of combining help and reading time is needed.  A similar argument can be made for accuracy; a student who 
simply skips over challenging words will have a rather different learning curve from a student who puzzles out 
challenging words.  In effect, student strategy choice results in a differential censoring of trials as the student 
who skips words is missing observations.    
 
Our approach was to use the student’s reading time as an outcome measure.  However, when the student either 
asked for help, or the word was scored as incorrect by the ASR, or the student skipped the word, then that word 
was assigned a reading time of 3.0 seconds.  Also, words whose reading time was greater than 3.0 seconds were 
capped at 3.0 seconds.  The penalty of 3.0 seconds is on the high end of reading times as only 0.1% of time 
exceeded this threshold, but not overly so as to be an unfair penalty. Overall, it seems a reasonable way to distill 
a variety of student strategy choices into a single number for reading time.  There are a variety of possible ways 
to combine help, correctness, and timing data.  Our approach seems reasonable.   

What constitutes a learning opportunity? 
Given that help can cause a short-term boost in student performance, a natural question is what other types of 
events can cause a similar effect?  If our goal is to measure student learning, we should try to exclude such data 
from our learning curve construction.  One example of such short-term scaffolding is that if a student reads a 
word and then shortly thereafter reads that same word again, we should be skeptical that the second reading 
really demonstrates the student’s knowledge of the word (as opposed to just retrieving it from short term 
memory).  Therefore, to model student reading development we only consider as an outcome variable his first 
encounter with a word on a particular day.  We do not use later encounters on the same day to track the student’s 
reading development since performance on those encounters is contaminated by short term scaffolding effects of 
the prior encounter(s).  This concern about short-term performance improvements is similar to the rationale we 



have used in the past for ignoring immediate performance to estimate the impact of help (Heiner, Beck, & 
Mostow, 2004).     
 
However, we do count subsequent encounters later in the day as opportunities to learn the word.  As an example 
to explain this differential treatment of later day encounters, consider a student who encounters the word 
“divided” in ten consecutive sentences (there are stories in the Reading Tutor where this actually occurs).  By 
the fifth time the student has to read the word he will have an extremely fast reading time.  However, we do not 
believe the student has necessarily learned the word that well.  Much of the improved performance comes from 
having the word immediately available in short term memory.  So, the observed performance is not necessarily 
an indicator of how much the student has learned, and we therefore do not use those observations as an outcome 
for our learning curve.  However, it is possible that the student continues to learn the word on the successive 
readings on the same day.  Therefore, we count the exposure as an encounter to the word.  Table 1 illustrates our 
approach.  For the first encounter, the student requests help and then reads the word quickly.  Since the student 
requested help the outcome is set to 3.0 seconds.  For the next trial, since it is the same day, that reading does 
not count as an outcome.  Similarly, the next trial’s performance is also ignored.  However, note that the prior 
encounters field, which tracks the student’s experience with this word, has been incremented to account for 
these two exposures.   

Table 1.  History of student encounters with word “elephant” 

Day 
Asked for 

help? 
Reading time 

(seconds) 
Prior 

encounters
Outcome 
(seconds) 

1 yes 0.5 0 3.0 
1 yes 1.5 1 - 
1 no 1.3 2 - 
2 no 3.8 3 3.0 
3 no 1.7 4 1.7 
3 no 1.2 5 - 

Learning components of fluency development 
For reading, what types of practice are likely to be more (or less) effective for students’ fluency development?  
There are many possible ways to think about what are ways of factoring apart trials at learning to read a word.  
We start with a known general psychology principle:  distributed practice is generally superior to massed 
practice for long term retention  (Ebbinghaus, 1885).  This general rule suggests a decomposition:  we consider 
a trial as distributed practice if the student has not encountered the word in the preceding 16 hours.  Massed 
practice would be times when the student encountered the word in the prior 16 hours.  We used 16 rather than 
24 hours as the cutoff since the tutor was used during the school day and we wanted to avoid situations where 
the student encounters a word at 10:00 a.m. one day and then at  9:30 a.m. the next day.  The essential construct 
is “did the trial occur on a later day?”  Table 2 shows has we decompose the prior encounters based on massed 
vs. distributed practice.     

Table 2 .  Decomposing prior trials as massed and distributed practice 

Prior encounters 
Day 

Asked for 
help? 

Reading time 
(seconds) Distributed Massed

Outcome 
(seconds) 

1 Yes 0.5 0 0 3.0 
1 Yes 1.5 1 0 - 
1 No 1.3 1 1 - 
2 No 3.8 1 2 3.0 
3 No 1.7 2 2 1.7 
3 No 1.2 2 3 - 

 
 
The other type of learning decomposition we performed was to examine whether reading the same story 
multiple times provides the same benefits as students reading different stories.  This debate of wide- vs. re-
reading has been ongoing in the reading community.  We decompose the t parameter into trials where this 
student encounters this word while reading new material vs. rereading old stories.  Since students can memorize 
a particular story, we only permit as an outcome variable the first time a student reads a particular story.  
However, analogous to how we handled massed practice trials, repeated readings of the same story count as 
trials for learning (in particular, the variable for rereading would be increased in each case).   



 
To simultaneously model rereading and massed practice, we created four possible trials types:   

1. RM represents rereading-massed learning opportunities.  I.e. cases where the student has already read 
the story in the past and is seeing the word a second time (or greater) time today.   

2. RD represents rereading-distributed learning opportunities.  I.e. cases where the student is rereading 
the story but has not seen the word earlier today.   

3. NM represents new-massed learning opportunities; cases where students are reading a story for the first 
time and have read the word previously today. 

4. ND represents new-distributed learning opportunities; students have not seen this story before and have 
not read the word previously today.   

 
Our model of reading development is shown in Equation 3.  The first term, l*word_length, represents that 
longer words can take longer to read.  The second term, w*wordID, accounts for more proficient readers reading 
text more quickly by modifying the term, A, representing first trial performance.  This model also includes a 
term, h, to represent the amount of past help the student has received on this word.  The w parameter controls for 
the student’s overall reading proficiency; the h parameter controls for his knowledge of this particular word.  
The remainder of the model is a learning decomposition model to simultaneously estimate the impact of 
massed- vs. distributed-practice and wide- vs. re-reading.  The goal is to find best-fitting values of the r and m 
parameters to find the relative impact of different types of practice on student reading development.   

 

 

Equation 3.  Model for examining effect of practice schedule and type of reading 

Again, there are many possible ways to decompose trials.  We chose two that were motivated by existing 
theories of learning and a current debate in the reading literature.     

RESULTS 
We fit our model using SPSS’s non-linear regression method.  Computationally this approach is quite efficient, 
taking about fifteen minutes to estimate coefficients with 770,858 outcome data points.  Table 3 shows the best 
fitting parameter estimates with standard errors for each of the terms in Equation 3.  The column labeled 
“overall” are the estimates for the entire population.  The next three columns are estimates by the bottom third, 
middle third, and upper third of the student population.  Low proficiency students had a test score of less than 
2.3 on the Woodcock Reading Mastery Word Identification subtest (2.3 corresponds to a 2nd grader in the 3rd 
month).  High proficiency students had scores greater than 3.1.  Medium proficiency students were those in 
between.       

Table 3.  Parameter estimates (± standard error) for learning decomposition model both overall and 
disaggregated by student proficiency 

 Overall Low proficiency Medium proficiency High proficiency 
L 0.113 ± .001 0.111  ±.001 0.138 ± .001 0.112 ± .001 
A 1.612 ± .005 1.701  ±.011 2.454 ± .03 0.825 ± .001 
W -0.231 ±. 001 -0.185  ±.005 -0.638 ± .011 -0.073 ± .001 
B 0.053 ±. 001 0.029  ±.001 0.076 ± .003 0.054 ± .003 

Help (h) -1.93 ± .05 -2.29 ±.11 -1.98 ± .10 -5.62 ± .42 
Reread (r) 0.53 ± .03 0.75 ±  .06 0.97 ± .08 1.16 ± .17 

Massed (m) 0.56 ± .05 0.98 ± .08 0.35 ± .04 0.24 ± .06 
 

Since L has a positive coefficient (0.113), it indicates that longer words take longer to read.  Since W has a 
negative coefficient (-0.231), it indicates that more proficient readers read words more quickly.  The A 
parameters suggests that students take about 1.61 seconds to read a word (using our modified outcome with a 
penalty of 3.0 seconds for mistakes and help requests) when encountering it for the first time.  The last three 
lines in Table 3 are of the most interest as they deal with the impact of help and the learning decomposition.     
 
The impact of help on learning was a bit perplexing:  help was worth a negative number of trials!  One 
interpretation is that help is actually hurting students somehow.  In complex domains where there are multiple 
representation and learning one way to solve a problem can interfere with another, instruction hurting student 
performance is possible.  However, given the nature of the Reading Tutor’s help this interpretation is unlikely.  
A more likely reason is that help indicates that students are having difficulty with this word, especially since 
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78% of help is student requested.  In cases where a student requests help, he performs roughly 2 trials worse 
than on similar words on which he doesn’t need help.  I.e. if the student had 10 previous encounters with the 
word and 2 help requests, we expect he would perform comparably to a student who had 6 previous encounters 
with the word.  So the help result is not about the impact of help, but what it says about the student’s knowledge 
of this word.   
 
We found that rereading had a coefficient of 0.53 for the entire student population.  In other words, rereading a 
story twice would have roughly the same amount of learning as reading a new story for the first time (2 * 0.53 = 
1.06 ≈ 1.0).  Therefore, our results suggest that students learn to read words better when they read a wide 
selection of stories rather than read the same story multiple times.  However, the picture changes when we 
examine the estimates obtained for each level of student proficiency.  There is a possible trend of more 
proficient readers benefiting from rereading.  Students in our high proficiency category showed 16% more 
benefit from rereading compared to wide reading.  However , this difference is not statistically reliable.   
 
We found that, for the entire population, massed practice had a coefficient of 0.56, similar to that for rereading.  
So, in general, massed practice is not helpful for learning how to read and students should read stories that do 
not repeat words many times.  However, this term showed an opposite trend as rereading:  less proficient readers 
were not harmed (nor were they helped) by massed practice while more proficient readers were held back by 
encountering words en masse.   

LIMITATIONS AND FUTURE WORK 
The relatively high standard error (SE) for this model was rather surprising.  We could reject the null hypothesis 
that the parameters representing rereading and massed practice were equal to 1.0 for the overall student 
populations.  However, for high proficiency students and rereading we cannot determine whether a difference of 
16% for high proficiency students in wide- vs. re-reading is real or a statistical fluke.  Given that we used 
roughly a quarter-million data points (one-third of the data set) to estimate the parameter for this population, 
such a null result is a bit discouraging.  How much data do we need to get reliable estimates? 
 
One possible reason for the high SE is the relatively weak model fit.  The R2 for the model in Equation 3 is 
11.0%.  This fit is within the range of fitting individual trials of 5.1% to 65.8% reported by (Heathcote et al., 
2000), and is not a sign the model is of the incorrect form.  It is important to keep in mind that fitting individual 
points will have a lower R2 than fitting aggregate statistics.  For example, a simple exponential model that 
models the average reading time but ignores differences in word length, reading proficiency, and type of 
exposure, achieves an R2  of 76%.  It is unfortunate that while fitting individual observations is more 
mathematically sound and enables more sophisticated approaches, it results in weaker model fits.  Determining 
some means of modeling individual observations but improving model fit is a high priority, as it should reduce 
the SE in the parameter estimates and enable more refined learning decompositions.   
 
Automating the search of the decomposition space is another fruitful avenue of research.  One crucial problem 
that must be overcome is finding some method for seeding the search space with expert knowledge.  Expert 
knowledge both reduces the size of the search space and biases the results so that it better fits with what is 
known.  The output of educational data mining can certainly improve computer tutors, but if that is all it does 
that would be unfortunate.  As a field, we have several novel methodological hammers that are unavailable to 
domain researchers who aren’t using these approaches.  We must find ways to transfer what we learn to the 
broader research community.  By hand selecting two major hypotheses of learning and reading, we manually 
biased the search to have output that will (hopefully) have high impact.  Can we have automated search that 
produces results that are equally shareable?   
 
Given that we have a set of high-level decompositions to perform, we still need to operatioanlize them.  For our 
analysis, massed practice was equated with seeing a word a 2nd time on the same day.  However, there are many 
ways to view “massed practice.”  Perhaps it means more than 5 practice attempts within 3 minutes?  Maybe the 
first 2 attempts on the same day aren’t massed but subsequent ones are?  There is a wide space of possible ways 
to instantiate the theory.  How do we know which is best?  Searching across instantiations of distributed practice 
is itself a large search space.  Can we afford to search both the space of good decompositions and the ways to 
instantiate the decompositions? 
 
One hybrid approach is to accept that the high-level decompositions should come from humans who will 
(hopefully) use existing theory (e.g. mass vs. distributed practice) and spend the computational resources on 
exploring that search space to find a good way to operationalize the theory.  Such an approach would seem to 



draw on the strengths of both resources.  Science is a social process and we need results that fit with existing 
theory (perhaps to disconfirm it).  Spending time searching for new theory may not be productive if no one 
understands the results.  However, a specific instantiation of the theory should be understandable.  For example, 
if instead our model of reading used the “5 practice attempts within 3 minutes” definition of massed practice, the 
results wouldn’t be any harder or easier for others to understand.  Such a hybrid approach seems a promising 
route forward.     
 
Another limitation of the work is that we can say that massed practice appears to be no better than, and in some 
cases is worse, than distributed practice.  However, we cannot state that no students would benefit from massed 
practice.  That less proficient readers had a coefficient of 0.98 is suggestive:  perhaps the very least proficient 
readers would benefit from massed practice?  Our current analysis provides no way of knowing.  One 
conceptually straightforward extension is to not specify a priori the probable types of students (e.g. upper, 
middle, and lower thirds) but to instead estimate the decomposition results per student and note the students for 
whom massed practice was beneficial vs. those for whom it was not.  The task would then be to find ways of 
classifying students to find general properties that predict when massed practice will be effective.  One 
stumbling block is that disaggregating by students decimates the sample size and results in very noisy parameter 
estimates.  Two approaches to address this problem are to either overcome the noisy parameter estimation 
process, or to instead live with the noise and treat the parameters as noisy estimates and still try to do the 
classification.   
 
We would like to make statements of the form “Rereading is less helpful for developing reading proficiency 
than wide reading.”  Unfortunately, our data were not gathered from randomized trials, but rather are 
observational in nature.  Although our model controls for several student properties, including overall 
proficiency, proficiency on this word (via help), and prior exposure to this word in the Reading Tutor, we should 
be careful before making causal inferences.    An example of such a confound is the result with help.  Students 
are not randomly assigned to a condition where some receive help and some do not; the self-selection of help 
creates a large bias in our data set leading to difficulties interpreting just what the negative help coefficient 
really meant.  The question is whether such self-selection of rereading and massed practice causes similar 
biases.  There are many possible causes for rereading:  student preference, low reading proficiency, etc.  
However, to disconfirm our model result the cause of rereading would also have to cause low gains in learning 
how to read.  Given that our model controls for test scores, it is difficult to come up with a plausible candidate.  
For massed practice the results are unlikely to be impacted by a latent variable since students and the tutor take 
turns picking stories (Mostow & Aist, 2001), so it is moderately difficult for students to cause massed practice 
to occur especially since students select stories based on the titles.  It would be desirable to find a method to 
estimate the plausibility or bound the effect of such hidden selection biases.   

CONTRIBUTIONS AND CONCLUSIONS 
This paper makes several contributions both methodologically and scientifically.  From a methodology 
standpoint, learning decomposition extends learning curve analysis to enable estimation of the impact of various 
types of trials.  The learning decomposition approach is broadly applicable to a wide variety of learning 
phenomena and is not specific to reading.  Furthermore, it is fast computationally and can be applied via a 
variety of off the shelf software packages.  Finally, the output is easy to interpret and share with other 
researchers. 
 
From a scientific standpoint, this work may resolve a standing debate in the reading community (is wide- or re-
reading better and for whom).  If the goal of our work is to have impact beyond our own tutors, finding 
modeling approaches that are easily grokkable and directly transferable to other communities must be a priority.  
Our results on what type of reading practice helps the most have not yet been fully disseminated to the reading 
community so it is premature to comment on whether this approach will result in conclusions understandable to 
domain researchers.  An earlier version of this work was presented at the 2005 Scientific Studies of Reading 
Conference and was well received.  The model presented in this paper will be discussed at the SSSR 2006 
conference.  Feedback received there will guide development of the model for publication in a reading or 
psychology journal. 
 
This paper also introduces an asymmetry in the process of constructing learning curves.  Typically the same 
trials are used both to construct the dependent measure (in our case, reading time) and the independents (the 
prior number of trials).  This work instead breaks that linkage by only permitting certain trials, those thought to 
be clean indicators of learning, to be used in the model fitting process.  However, less pure trials (e.g. massed 
practice) are entered into the model to estimate their impact on the outcome.  E.g. in Table 1 there are six 



attempts to read the word “elephant,” but only three of those trials would be used as dependents when 
constructing the learning curve (however, all prior trials would be entered as independents).   
 
The closest related research is learning factors analysis (LFA) (e.g. (Cen, Koedinger, & Junker, 2005)).  Both 
LFA and learning decomposition are concerned with better understanding student learning.  LFA focuses on 
modifying the domain representation by adding, removing, or combining skills to create better fitting learning 
curves where the impact of various types of practice is assumed to be constant.  Learning decomposition focuses 
on determining the impact of various types of practice, and assumes the domain representation is constant.  A 
unified framework that simultaneously allows the skills and impact of practice to vary would be desirable.   
 
The fairly high standard errors for the parameter estimates suggest that the approach of learning decomposition  
is only feasible with big data.  Thus, it is an excellent “secret weapon” for use by educational data miners for 
answers questions about learning and instruction.   
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