
Joint Discovery of Skill Prerequisite Graphs
and Student Models

Yetian Chen?†, José P. González-Brenes†, Jin Tian?

?Computer Science Department
Iowa State University

Ames, IA, USA
{yetianc, jtian}@iastate.edu

†Advance Computing and Data Science Lab
Pearson

San Diego, CA, USA
jose.gonzalez-brenes@pearson.com

ABSTRACT
Skill prerequisite information is useful for tutoring systems that as-
sess student knowledge or that provide remediation. These systems
often encode prerequisites as graphs designed by subject matter
experts in a costly and time-consuming process. In this paper, we
introduce Combined student Modeling and prerequisite Discovery
(COMMAND), a novel algorithm for jointly inferring a prerequisite
graph and a student model from data. Learning a COMMAND
model requires student performance data and a mapping of items to
skills (Q-matrix). COMMAND learns the skill prerequisite relations
as a Bayesian network (an encoding of the probabilistic dependence
among the skills) via a two-stage learning process. In the first stage,
it uses an algorithm called Structural Expectation Maximization to
select a class of equivalent Bayesian networks; in the second stage,
it uses curriculum information to select a single Bayesian network.
Our experiments on simulations and real student data suggest that
COMMAND is better than prior methods in the literature.

Keywords
Prerequisite discovery, Bayesian network, student modeling

1. INTRODUCTION
Course curricula are usually organized in a meaningful sequence
that evolves from relatively simple lessons to more complex ones.
Among these lessons, some are required to be mastered by the
student before the subsequent ones can be learned. For instance,
students have to know how to do addition before they learn to do
multiplication. We refer to prerequisite structure as the relationships
among skills that place strict constraints on the order in which skills
can be acquired.

Prerequisite structures are crucial for designing intelligent tutoring
systems that assess student knowledge or that offer remediation
interventions to students. Building such systems require prerequisite
information that is often hand-engineered by subject matter experts
in a costly and time-consuming process. Moreover, the prerequisite
structures specified by the experts are seldom tested and might be
unreliable in the sense that experts may have “blind spots".

Recent interest in computer assisted education promises large amounts
of data from students solving items— questions, problems, parts
of questions. Performance data –what items a learner answers
correctly– can be used to create student models. These models rep-
resent an estimate of skill proficiency at a given point in time [17].
For example, a student model can represent that Alice has already
mastered integer addition, but Bob has not. Student models are often
used to personalize instruction in tutoring systems or to predict fu-
ture student performance. In this paper, we introduce Combined stu-
dent Modeling and prerequisite Discovery (COMMAND), a novel
algorithm for simultaneously discovering prerequisite structure of
skills and a student model from student performance data.

2. RELATION TO PRIOR WORK
Prior work has investigated how to discover prerequisites among
items without considering their mapping into skills [6, 19]. Item-to-
skill mappings (also called Q-matrices) are desirable because they
allow more interpretable diagnostic information. Because of this,
follow-up work [2, 4] has studied whether a pair of skills have a
prerequisite relationship or not. For this, we can measure if a model
that assumes a dependency between the two skills explains the data
better than a model that assumes independence. This comparison
can be done with data likelihood [2] or association rule mining [4].
Although promising, prior methods have limitations that we address:

1. We estimate the global prerequisite structure, not just the
pairwise relationships. For example, suppose we want to
discover the prerequisites of three skills for English learning
(S1:syntax, S2:cohesion and S3:lexical rules). If we use prior
methods, we discover that the three skills are related among
each other. However, pairwise methods are unable to tell if
the relationships are due to indirect (e.g, S3→ S2→ S1), or
direct (e.g, S3→ S2→S1) effects.

2. It is unclear how to use the output of these prerequisite struc-
tures for student modeling. For example, it is not obvious
how to best use them to make predictions of future student
performance.

3. Prior work does not provide quantitative evaluation using real
student data. Overall, learner data has been used to provide
examples, but without any methodology that can help compare
what algorithm works better.

A statistical formalism called Bayesian network has been useful
to model prerequisite structures [12]. Bayesian networks allows
modeling the full structure of skills (beyond pairwise relationships)

Proceedings of the 9th International Conference on Educational Data Mining 46

Figure 1: A hypothetical Bayesian network. Solid edges are given
by item to skill mapping, dashed edges between skill variables are
to be discovered from data. The conditional probability tables are to
be learned.

and can encode conditional independence between the skills. Un-
fortunately, prior work with Bayesian networks requires a domain
expert to design the prerequisite structures [10], and automatic tech-
niques have not been demonstrated with real student data [14]. We
now describe the COMMAND algorithm that discovers a Bayesian
network that encodes the prerequisite structure of skills.

3. THE COMMAND ALGORITHM
COMMAND learns the prerequisite structure of the skills from data
with a statistical model called Bayesian network [13, 15]. Bayesian
networks are one type of probabilistic graphical models because
they can be represented visually and algebraically as a collection
of nodes and edges. A tutorial description of Bayesian networks in
education can be found elsewhere [12], but for now we say that they
are often described with two components: the nodes represent the
random variables, which we describe using conditional probability
tables (CPTs), and the set of edges that form a directed acyclic
graph (DAG) represent the conditional dependencies between the
variables. Bayesian networks are a flexible tool that can be used to
model an entire curriculum.

Figure 1 illustrates an example of a prerequisite structure modeled
with a Bayesian network. Here, we relate four test items with the
skills of addition and multiplication. Addition is a prerequisite of
multiplication thus there is an arrow from addition to multiplication.
Modeling prerequisites as edges in a Bayesian network allows us
to frame the discovery of the prerequisite relationships as the well-
studied machine learning problem of learning a Bayesian network
from data with the presence of unobserved latent variables. We
represent the prerequisite structure using Bayesian networks that
use latent binary variables to represent the student knowledge of a
skill (i.e., mastery or not mastery), and observed binary variables
that represent the student performance answering items (i.e., correct
or incorrect).

Algorithm 1 describes the COMMAND pipeline. The input to COM-
MAND is a matrix D with n× p dimensions, representing n students,
answering p items. Each entry in D encodes the performance of
a student (see Table 1 for an example). Additionally, we require
a Q-matrix to represent the item-to-skill mapping. Q-matrices are
often designed by subject matter experts but automatic methods to
discover them exist [8].

Table 1: Example student performance matrix to use with COM-
MAND. The performance of a student is encoded with 1 if the
student answered correctly the item, and 0 otherwise.

User Item 1 Item 2 Item 3 Item p

Alice 0 1 0
Bob 1 1 ... 1
Carol 0 0 1

...

Algorithm 1 The COMMAND algorithm
Require: A matrix D of student performance on a set of test items,

skill-to-item mapping Q (containing a set of skills S).
1: G0← Initialize(S,Q)
2: i← 0
3: do
4: E-step:
5: Θ∗i ← ParametricEM(Gi,D)
6: D∗i ← Inference(Gi,Θ∗i ,D)
7: M-step:
8: 〈Gi+1,Θi+1〉 ← BNLearning(Gi,D∗i)
9: i← i+1

10: while stop criterion is not met
11: RE← FindReversibleEdges(Gi)
12: EC← EnumEquivalentDAGs(Gi)
13: DE←{}
14: for every reversible edge Si−S j in RE do
15: ratio← P(S j=0|Si=0)

P(Si=0|S j=0)
1

16: if ratio≥ 1 then
17: ratio∗ = ratio
18: DE← DE ∪Si→ S j
19: else
20: ratio∗ = 1

ratio
21: DE← DE ∪Si← S j
22: end if
23: end for
24: sort(DE) by ratio∗ in descending order
25: while DE is not empty do
26: e← dequeue(DE)
27: if ∃G ∈ EC e ∈ G then
28: ∀G ∈ EC, remove G from EC if e < G
29: end if
30: end while
31: return EC

Initialization

Structural EM

Discriminate
between equiv-

alent BNs

COMMAND relies on a popular machine learning algorithm called
Structural Expectation Maximization (Structural EM), which to the
extent of our knowledge has not been used in educational applica-
tions before. Structural EM extends the Expectation Maximization
(EM) algorithm to allow efficient structure learning of Bayesian
networks when there are latent variables or missing values in the
data. A secondary contribution of our work is introducing Structural
EM for learning Bayesian network structures from educational data.
We now describe the steps of COMMAND in detail.

3.1 Initial Bayesian Network
COMMAND first creates an initial Bayesian network using the Q-
matrix by creating an arc to each item from each of its required

1P(Si = a|S j = b) can be computed using any Bayesian network
inference algorithm such as Junction tree algorithm [11].

Proceedings of the 9th International Conference on Educational Data Mining 47

Figure 2: An illustration of the Structure EM algorithm to discover the
structure of the latent variables. G represents the DAG structure. Θ is the set
of conditional probability tables (CPTs).

skills. Because there are no edges between the skills, this initial
network does not encode any prerequisite information. COMMAND
uses Structural EM to learn arcs (prerequisites) between the skill
variables.

3.2 Structural EM
A common solution to learning a Bayesian network from data is
the score-and-search approach [5, 9]. This approach uses a scoring
function (like the Bayesian Information Criterion (BIC)) to mea-
sure the fitness of a Bayesian network structure to the observed
data, and it attempts to find the optimal model in the space of
all possible Bayesian network structures. However, the conven-
tional score-and-search approaches rely on efficient computation
of the scoring function, which is only feasible for problems where
data contain observations for all variables in the Bayesian network.
Unfortunately, our domain has skill variables that are not directly
observed. An intuitive work-around is to use EM to estimate the
scoring function. However, in this case EM takes a large number
(hundreds) of iterations that require Bayesian network inference,
which is computationally prohibitive. Further, we need run EM
for each candidate structure, and the number of possible Bayesian
network structures is super-exponential with respect to the number
of nodes. The Structural EM algorithm [7] is an efficient alternative.

Structural EM is an iterative algorithm that inputs a matrix D of
student performance (see example Table 1). Figure 2 illustrates one
iteration of the Structural EM algorithm. The relevant steps are also
sketched in Algorithm 1. Each iteration consists of an Expectation
step (E-step) and a Maximization step (M-step). In the E-step, it first
finds the maximum likelihood estimate Θ∗ of the CPTs for the cur-
rent structure G calculated from previous iteration using parametric
EM. It then does Bayesian inference to compute the expected values
for the latent variables using the current model (G,Θ∗), and uses the
values to complete the data. In the M-step, it uses the conventional
score-and-search approach to optimize the structure according to the
completed data (as if the latent variables were observed). Since the
space of possible Bayesian network structures is super-exponential,
exhaustive search is intractable and local search algorithms, such
as greedy hill-climbing search, are often used. The E-step and
M-step interleave and iterate until some stop criterion is met, e.g.,
the scoring function does not change significantly. Contrast to the
conventional score-and-search algorithm, Structural EM runs EM
only on one structure in each iteration, thus is computationally more
efficient.

We use an efficient implementation of Structural EM available on-
line called LibB2. Because COMMAND’s initialization step fixes
the arcs from skills to items according to the Q-matrix, the M-step

2http://compbio.cs.huji.ac.il/LibB/programs.html

only needs to consider the candidate structures that comply with
the Q-matrix. An advantage of using Structural EM to discover the
prerequisite relationship of skills is that it can be easily extended
to incorporate domain knowledge. For example, we can place con-
straints on the output structure to force or to disallow a skill to be a
prerequisite of another skill. Another advantage of Structural EM
is that it can be applied when there are missing data in the student
performance matrix D [7]. That is, some students do not answer
all the items. The general idea is, in the E-step, the algorithm also
computes the expected values for missing data points, in addition
for latent variables.

3.3 Discriminate Between Equivalent BNs
Structural EM selects a Bayesian network model based on how well
it explains the distribution of the data. Bayesian network theory
states that some Bayesian networks are statistically equivalent in
representing the data. Thus, the output from Structural EM is ac-
tually an equivalence class (EC) that may contain many Bayesian
network structures3. These equivalent Bayesian networks have the
same skeleton and the same v-structures4. For instance, Figure 3
gives an example of a simple equivalence class containing three
Bayesian networks that are not distinguishable by Structural EM
algorithm and the method in [14]. They share the skeleton but differ
in the orientation of at least one of the edges (we will call such an
edge a reversible edge). They apparently represent three different
prerequisite structures.

(a) (b) (c)

Figure 3: Three equivalent Bayesian networks representing different
prerequisite structures.

3.3.1 Domain Knowledge
To determine a unique structure, we use a heuristic based in domain
knowledge to determine the orientation of each reversible edge. For
convenience in notation, let’s assume that the random variables that
represent skill proficiency can take two values: 0 if the skills is not
mastered, and 1 if the skill is mastered. Our assumption is that if
a skill S1 is the prerequisite of a skill S2, a student can not master
skill S2 before she masters S1. More formally:

Assumption. If S1 is a prerequisite of S2 (i.e., S1 → S2), then
S1 = 0⇒ S2 = 0. In other words, P(S2 = 0|S1 = 0) = 1.

Our assumption implies that S1 cannot be a prerequisite of S2 if
P(S2 = 0|S1 = 0) = 1 does not hold. This puts a constraint on the
joint distribution encoded by the Bayesian network to be learned.

For example, consider the case of choosing the orientation of a
reversible edge S1− S2 from S1 ← S2 or S1 → S2. We can check
whether P(S2 = 0|S1 = 0) = 1 or P(S1 = 0|S2 = 0) = 1. However,
it is possible that our assumption does not hold, and a student
got to master a skill even if he does not know the prerequisite.
Moreover, because of statistical noise, the conditional probability
P(S2 = 0|S1 = 0) may not be exactly 1. Thus, we use the following
empirical rule:

3Structural EM outputs a DAG. However, the scoring function does
not discriminate between the many DAGs of the equivalence class.
4A v-structure with nodes u,v,w in a DAG are the directed edges
u→ v and w→ v and u and w are not adjacent in the DAG [18].

Proceedings of the 9th International Conference on Educational Data Mining 48

Rule 1. if P(S2 = 0|S1 = 0) ≥ P(S1 = 0|S2 = 0), we determine
S1→ S2; otherwise, we determine S1← S2.

Note that these two conditional probabilities can be computed eas-
ily from the Bayesian network model output from Structural EM.
The intuition behind this rule is that the conditional probability
P(S2 = 0|S1 = 0) can be interpreted as the strength of the prerequi-
site relationship S1→ S2. The larger of this probability, the more
likely the relationship S1→ S2 holds. Since here we are concerned
with which direction the edge goes, we simply compare the two
probabilities and select the direction that is more probable. Note
that P(S2 = 0|S1 = 0) = 1 and P(S1 = 0|S2 = 0) = 1 may hold
simultaneously. If S1 → S2 is true, P(S1 = 0|S2 = 0) = 1 only
if P(S1 = 1) = 0 or if P(S2 = 0|S1 = 1) = 0.5 If P(S1 = 1) = 0,
this implies that no student knows S1. If P(S2 = 0|S1 = 1) = 0, it
means that learning S2 becomes trivial once students know S1. For
simplicity, we ignore this extreme case.

3.3.2 Theoretical Justification of Heuristic
We now provide theoretical justification for the rule we propose.
Consider a simple equivalence class, which contains two equivalent
DAGs S1→ S2 and S1← S2, where the true model is S1→ S2. We
have three free conditional probability parameters: P(S1 = 0) = p,
P(S2 = 0|S1 = 0) = q, P(S2 = 1|S1 = 1) = r. Let’s define a ratio
that quantifies choosing the true model:

ratio =
P(S2 = 0|S1 = 0)
P(S1 = 0|S2 = 0)

. (1)

Using Bayes rule and rules of probability, the rule ratio≥ 1 becomes
(1− p)(1−r)− p(1−q)≥ 0. Since ratio depends on p, q and r, we
study how ratio changes with these parameters. Figure 4 shows the
contour plots of log(ratio) against P(S1 = 0) and P(S2 = 1|S1 = 1)
for three different values of P(S2 = 0|S1 = 0). The white region
in each contour plot is the region where our heuristic fails because
ratio < 1. Figure 4(a) shows that when P(S2 = 0|S1 = 0) = q = 1,
our heuristic rule is always correct, no matter what, because there
is no white space. With P(S2 = 0|S1 = 0) decreasing, the white
region becomes larger and the rule becomes less accurate. As
mentioned, P(S2 = 0|S1 = 0) can be interpreted as the strength of
the prerequisite relationship. If we fix the value of P(S2 = 0|S1 = 0)
and assume that the two free parameters p and r are independent and
uniformly distributed, then the area of the white region represents
the probability that the rule makes a wrong decision. As the strength
of the prerequisite relationship gets weaker, our rule to determine
the prerequisite relationship becomes less accurate.

(a) (b) (c)

Figure 4: Contour plots of log(ratio) against P(S1 = 0) and P(S2 =
1|S1 = 1) for various values of P(S2 = 0|S1 = 0).

3.3.3 Orient All Reversible Edges
Using our proposed rule, we can orient every reversible edge in
the network structure. However, orienting each reversible edge is

5Since P(S1 = 0|S2 = 0)= P(S2=0|S1=0)P(S1=0)
P(S2=0|S1=0)P(S1=0)+P(S2=0|S1=1)P(S1=1) ,

P(S1 = 0|S2 = 0) = 1 only if P(S2 = 0|S1 = 1)P(S1 = 1) = 0.

not independent and may conflict with each other. Having oriented
one edge would constrain the orientation of other reversible edges
because we have to ensure the graph is a DAG and the equivalence
property is not violated. For example, in Figure 5a, if we have
determined S1→ S2, the edge S2→ S3 is enforced. In this paper, we
take an ad-hoc strategy to determine the orientation for all reversible
edges. For each reversible edge Si− S j, we let ratio∗ = ratio if
ratio≥ 1 and ratio∗ = 1

ratio otherwise. The larger the ratio∗ is, the
more confidently when we decide the orientation. We sort the list of
reversible edges by ratio∗ in descending order. We then orient the
edges by this ordering. In our implementation, we use the following
strategy: we first enumerate all equivalent Bayesian networks and
make them a list of candidates; when an edge is oriented to Si→ S j ,
we remove all contradicting Bayesian networks from the list. Even-
tually only one Bayesian network structure stands. This procedure is
detailed in the Discriminate between equivalent BNs section of Algo-
rithm 1. The EnumEquivalentDAGs(Gi) implements the algorithm
of enumerating equivalent DAGs in [3].

4. EVALUATION
In § 4.1, we evaluate COMMAND with simulated data to assess the
quality of the discovered prerequisite structures. Then, in § 4.2 we
use data collected from real students. In all our experiments, we use
BIC as the scoring function in Structural EM .

4.1 Simulated Data
Synthetic data allow us to study how COMMAND compares to the
ground truth. For this, we engineered three prerequisite structures
(DAGs), shown in Figure 5. Here, each figure represents different
causal relations between the simulated latent skill variables.

(a) Structure 1

(b) Structure 2 (c) Structure 3

Figure 5: Three different DAGs between latent skill variables. Item
nodes are omitted.

For clarity, Figure 5 omits the item nodes; but each skill node is
parent of six item variables and each item variable has 1-3 skill nodes
as parents. All of these nodes are modeled using binary random
variables. More precisely, the latent nodes represent whether the
student achieves mastery of the skill, and the observed nodes indicate
if the student answers the item correctly. Notice that these networks
include the prerequisite structures as well as the skill-item mapping.

We consider simulated data with different number of observations
(n = 150,500,1000,2000). For each sample size and each DAG, we
generate ten different sets of conditional probability tables randomly
with three constraints. First, we enforce that achieving mastery of the
prerequisites of a skill will increase the likelihood of mastering the

Proceedings of the 9th International Conference on Educational Data Mining 49

skill. Second, for each prerequisite pair Si→ S j, P(S j = 0|Si = 0)
is randomly selected to be in [0.9,1.0]. Finally, mastery of a skill
increases the probability of student correctly answering the test item.
In total we generated 120 synthetic datasets (3 DAGs x 4 sample
sizes x 10 CPTs), and report the average results.

We evaluate how well COMMAND can discover the true prerequi-
site structure using metrics designed to evaluate Bayesian networks
structure discovery. In particular, we use the F1 adjacency score and
the F1 orientation score. The adjacency score measures how well
we can recover connections between nodes. It is a weighted average
of the true positive adjacency rate and the true discovery adjacency
rate. On the other hand, the orientation score measures how well we
can recover the direction of the edges. It is calculated as a weighted
average of the true positive orientation rate and true discovery ori-
entation rate. In both cases, the F1 score reaches its best value at
1 and worst at 0. Moreover, for comparison, we compute the F1
adjacency score for Bayesian network structures whose skill nodes
are fully connected with each other. These fully connected DAGs
will serve as baselines for evaluating the adjacency discovery6. For
completeness, we list these formulas in tables 2 and 3, respectively.

Table 2: Formulas for measuring adjacency rate (AR)

Metric Formula

True positive (TPAR) # of correct adjacencies in learned model
of adjacencies in true model

True discovery (TDAR) # of correct adjacencies in learned model
of adjacencies in learned model

F1-AR 2·TPAR·TDAR
TPAR+TDAR

Table 3: Formulas for measuring orientation rate (OR)

Metric Formula

True positive (TPOR) # of correctly directed edges in learned model
of directed edges in true model

True discovery (TDOR) # of correctly directed edges in learned model
of directed edges in learned model

F1-OR 2·TPOR·TDOR
TPOR+TDOR

We use these metrics to evaluate the effect of varying the number
of observations of the training set (sample size) on the quality of
learning the prerequisite structure. We designed experiments to
specifically answer the following four questions:

1. How does the type of items affect COMMAND’s ability to
recover the prerequisite structure? We consider the situation
where in the model each item requires only one skill and the
situation where each item requires multiple skills.

2. How well does COMMAND perform when there is noise in
the data? We focus on studying noise due to the presence of
unaccounted latent variables.

3. How well does COMMAND perform when the student per-
formance data have missing values?

4. How is COMMAND compared with other prerequisite dis-
covery methods? In particular, we compare COMMAND to
the Probabilistic Association Rules Mining (PARM) method
[4].

We now investigate these questions.

6We do not compute F1 orientation score for fully connected DAGs
because all edges in a fully connected DAG are reversible.

4.1.1 Single-skill vs Multi-skill Items
We consider two situations where different types of Q-matrix are
used. In the first situation, each item node maps to exactly one skill
node. In the second one, each item maps to 1-3 skills. Figure 6
compares the F1 of adjacency discovery and edge orientation results
under the two types of Q-matrices. With only 500 observations,
COMMAND improves on a fully connected Bayesian network base-
line. COMMAND’s accuracy improves with the amount of data, but
its accuracy is slightly lower when the Q-matrix contains items that
require more than one skill. A possible explanation for this is that
multi-skill items may introduce more spurious correlations in the
data. With just 2000 observations, COMMAND recovers the true
structures almost perfectly.

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Adjacency Discovery ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Adjacency Discovery ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Edge Orientation ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Edge Orientation ± 1.96*SE

Struct 1
Struct 2
Struct 3

Single Skill Multiple Skill

Figure 6: Comparison of F1 scores for adjacency discovery (top
row) and for edge orientation (bottom row). Horizontal lines are
baseline scores for fully-connected (complete) networks. The error
bars show the 95% confidence intervals, i.e., ±1.96∗SE.

4.1.2 Sensitivity to Noise
Real-world data sets often contain various types of noise. For exam-
ple, noise may occur due to latent variables that are not explicitly
modeled. To evaluate the sensitivity of COMMAND to noise, we
synthesize the three Bayesian networks in Figure 5 to include a
StudentAbility node that takes three possible states (low/med/high).
In these Bayesian networks, students’ performance depends not only
on whether they have mastered the skills, but also on their individual
ability. For simplicity, all items in the setting are single-skilled
items. We first simulated data from Bayesian networks that have a
StudentAbility variable to generate “noisy” data samples, and then
use this data to recover the prerequisite structure. Figure 7 illustrates
the procedure of this sensitivity analysis experiment for Structure 1.

Figure 7: Evaluation of COMMAND with noisy data

Proceedings of the 9th International Conference on Educational Data Mining 50

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Adjacency Discovery ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Adjacency Discovery ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample Size

F1 Score for Edge Orientation ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000
F

1
sc

or
e

Sample Size

F1 Score for Edge Orientation ± 1.96*SE

Struct 1
Struct 2
Struct 3

No Noise Noisy

Figure 8: Results of adding systematic noise. Top: Comparison of
F1 scores for adjacency discovery. Horizontal lines are baseline F1
scores computed for fully connected Bayesian networks. Bottom:
Comparison of F1 scores for edge orientation.

Figure 8 compares the results where noise was introduced or not.
Interestingly, the noise actually improves COMMAND’s accuracy.
This improvement is more evident when the sample size is small
(see n = 150). For smaller sample sizes, Structural EM usually
discovers less relationships than actually exist, because BIC prefers
sparse structures. We hypothesize that the correlations caused by
StudentAbility node would cause Structural EM to add “stronger”
edges between skill nodes, resulting in higher F1.

4.1.3 Sensitivity to Missing Values
Real-world datasets collected from students often have missing
values, for example, when learners do not answer all items. To
evaluate how COMMAND performs on data with missing values,
we generated data sets of with 1000 observations with varying
fraction of randomly missing values (10%, 20%, 30%, 40%, 50%).
We used COMMAND to recover the structures from these data sets.
Again, the models only contain single-skilled items. Figure 9 shows
the results of this experiment. Although accuracy decreases when
the fraction of missing values increases, COMMAND is able to
recover the true structures for Structure 1 and 2 even when the data
contain up to 30% missing values.

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 10% 20% 30% 40% 50%

F
1

sc
or

e

Fraction of Missing Data

F1 Score for Adjacency Discovery ± 1.96*SE

Struct 1
Struct 2
Struct 3

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 10% 20% 30% 40% 50%

F
1

sc
or

e

Fraction of Missing Data

F1 Score for Edge Orientation ± 1.96*SE

Struct 1
Struct 2
Struct 3

Figure 9: Results of learning with missing data. Left: Comparison
of F1 scores for adjacency discovery. Horizontal lines are baseline
F1 scores computed for fully connected Bayesian networks. Right:
Comparison of F1 scores for edge orientation.

4.1.4 Comparison With Prior Work
The Probabilistic Association Rules Mining (PARM) is a recent
algorithm for discovering the prerequisite relationships between
skills [4]. In this approach, a prerequisite relationship S1→ S2 is
considered to exist if P(S1 = 1,S2 = 1)≥ minsup∧P(S1 = 1|S2 =
1) ≥ mincon f) ≥ minprob and P(P(S1 = 0,S2 = 0) ≥ minsup∧
P(S2 = 0|S1 = 0)≥mincon f)≥minprob, where minsup, mincon f
and minprob are pre-specified constants between 0 and 1.

We simulate data from Structure 3 from Figure 5(c) (with single-
skilled items), which has 21 pair-wise prerequisite relationships. We
derive pair-wise prerequisite relationships from this network and
see how the two approaches discover these relationships. When ex-
perimenting with PARM, we use minsup = 0.125, mincon f = 0.76,
minprob = 0.9, because they were suggested by the authors [4].

PARM is limited to discovering pair-wise prerequisite relationships
(instead of constructing the full structure). To make a fair compari-
son, we evaluate how accurately COMMAND and PARM discover
relationship pairs. For this, we use the F1 metric in Table 2, but
we count pairs of related skills instead of adjacencies. Two skills
are related if one is a descendant of the other one. Figure 10 shows
that COMMAND outperforms PARM, and the difference becomes
significant for sample size n≥ 500. The low F1 score of by PARM
is because it fails to discover many prerequisite relationships (data
not shown), and because PARM does not respect transitivity. For
example, PARM may reject S1→ S3 even it has discovered S1→ S2
and S2→ S3. We speculate that selecting a different set of cutoff
values for PARM may improve the results. However, determining
these thresholds is not trivial and may require experts’ intervention.
By contrast, COMMAND does not require tuning.

 0

 0.2

 0.4

 0.6

 0.8

 1

150 500 1000 2000

F
1

sc
or

e

Sample size

Comparison of COMMAND and PARM (± 1.96*SE)

COMMAND
PARM

Figure 10: Comparison of COMMAND and PARM for discovering
prerequisite relationships in Structure 3.

4.2 Real Student Performance Data
We now evaluate COMMAND using two real-world data sets.

4.2.1 English Data Set
The Examination for the Certification of Proficiency in English
(ECPE) dataset describes 2922 examines in their understanding
of English language grammar [16]. The dataset includes student
performance in 28 items on 3 skills (S1: morphosyntactic rules, S2:
cohesive rules, and S3:lexical rules). Each item requires either one
or two of the three skills.

Figure 11 shows the prerequisite structure discovered with COM-
MAND. It hypothesizes that lexical rules is a prerequisite of cohe-
sive rules and morphosyntactic rules; cohesive rules is a necessary
skill for learning morphosyntactic rules. The pair-wise prerequisite
relationships totally agrees with the findings in [16] and that by the
PARM method in [4]. Our model infers a complete DAG, suggest-
ing that there are no conditional independencies among the three

Proceedings of the 9th International Conference on Educational Data Mining 51

Figure 11: The estimated DAG and CPTs of the ECPE data set.

skills. This is an interesting insight that previous approaches cannot
provide. Further, COMMAND also outputs the conditional prob-
abilities associated with each skill and its direct prerequisite. We
clearly see that the probability of student mastering a skill increases
when the student has acquired more prerequisites of the skill.

4.2.2 Math Data Set
We now evaluate COMMAND using data collected from a commer-
cial non-adaptive tutoring system. The textbook items are classified
in chapters, sections, and objectives. We only use student perfor-
mance data from tests in Chapter 2 and 3. That is, students are tested
on the items after they have been taught all relevant skills.

Q-matrix and preprocessing. We define skills as book sec-
tions. We use a Q-matrix that assigns each exercise to a skill solely
as the book section in which the item appears.7 For each chapter,
we process the data to find a subset of items and students that do not
have missing values. That is, the datasets we use in COMMAND
have students responding to all of the items.

After filtering, two data sets, Math-chap2 and Math-chap3, were
obtained for Chapter 2 and 3 respectively. In Math-chap2, six
skills are included and each skill is tested on three to eight items,
for a total of 30 items. In Math-chap3, seven skills are included
and each skill has three to seven items, for a total of 33 items.
Math-chap2 includes student test results for 1720 students, while
the Math-chap3 has test results for 1245 students. For simplicity we
use binary variables to encode performance data and skill variables.

Prerequisite Structure Discovery. The Bayesian networks
generated with the COMMAND algorithm are illustrated in Fig-
ure 12. Our observation is that the topological order of the sections
in both structures are fully consistent with the book ordering heuris-
tic. This shows an agreement between our fully data-driven method
and human experts. We also ran PARM approach to learn pair-wise
prerequisite relationships from these data sets. Given minsup =
0.125, mincon f = 0.76 and minprob = 0.9, 2_5→ 2_6, 2_5→ 2_7
and 2_6→ 2_7 are discovered for Math-chap2, 3_1→ 3_3 and
3_2→ 3_3 are discovered for Math-chap3. These relationships are
small subset of the set of relationships discovered by COMMAND.

Predictive Performance. COMMAND outputs a Bayesian net-
work model that can be used for inference and predictive modeling.
For example, given a student’s response to a set of items, we can
infer the student’s knowledge status of a skill. We could use COM-
MAND to identify students that may need remediation because they

7Here we assume the items are single-skilled despite that they might
be multi-skilled.

(a) Prerequisite structure learned for Math-chap2.

(b) Prerequisite structure learned for Math-chap3.

Figure 12: Prerequisite structures constructed by COMMAND for
Math data sets.

lack some background. We evaluate the accuracy of the predicted
student performance on an item, when we observe the student re-
sponse on the other items. More precisely, we compute the posterior
probability of a student’s response to an item Ii given his perfor-
mance on all other items I−i = I\{Ii}, by marginalizing over the
set of latent variables S:

P(Ii|I−i = i−i) = ∑
S

P(Ii,S|I−i = i−i).

This probability can be computed efficiently using the Junction
tree algorithm [11]. We then do binary classification based on the
posterior probability to determine if the student is likely to answer
correct. We compare the Bayesian network models generated from
COMMAND with five baseline predictors:

• A majority classifier which always classifies an instance to
the majority class. For example, if majority of the students
get an item wrong, other students would likely get it wrong.

• A Bayesian network model in which the skill variables are
disconnected. This model assumes that the skill variables are
marginally independent of each other. Most existing knowl-
edge tracing approaches make this assumption.

• A Bayesian network model in which the skill variables are
connected in a chain structure, i.e., 2-2→2-3→2-4→ . . . This
assumes that a section (skill) only depends on the previous sec-
tion. In other words, a first-order Markov chain dependency
structure.

• A Bayesian network model constructed using the pairwise
relationships output from PARM. That is, we create an edge
Si→ S j if PARM says Si is the prerequisite of S j.

Proceedings of the 9th International Conference on Educational Data Mining 52

• A fully connected Bayesian network where skill variables
are fully connected with each other. This model assumes
no conditional independence between skill variables and can
encode any joint distribution over the skill variables. However,
it has exponential number of free parameters and thus can
easily overfit the data.

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

Majority

Disconnected

Chain
PARM

COMMAND

Fully connected

A
U

C

(a) Math-chap2 AUC results.

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

Majority

Disconnected

Chain
PARM

COMMAND

Fully connected
A

U
C

(b) Math-chap3 AUC results.

Figure 13: Ten fold cross-validation results of evaluating the predic-
tions of student performance.

The parameters of these baseline Bayesian network predictors are
estimated from the data using parametric EM. The model predic-
tions were evaluated using the Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC) curve metric calculated
from 10-fold cross-validation. Results are presented in Figure 13.
The error bars show the 95% confidence intervals calculated from
the cross-validation. On both Math-chap2 and Math-chap3 data
sets, the COMMAND models outperform the other five models. The
fully connected models are the second best performing models. On
Math-chap2, COMMAND model has an AUC of 0.803± 0.008
and the fully-connected model has an AUC of 0.791±0.007 (Fig-
ure 13a). A paired t-test reveals that the AUC difference of two
models are statistically significant with a p-value of 0.0022. On
Math-chap3, COMMAND model has an AUC of 0.775± 0.007
and the fully-connected model has an AUC of 0.765±0.008 (Fig-
ure 13b). The AUC difference of two models are also statistically
significant with a p-value of 0.01. The fully connected models are
outperformed by the much simpler prerequisite models, suggesting
overfitting.

5. CONCLUSION AND DISCUSSION
Prerequisite graphs have been shown [1, 10] to improve student mod-
els. However, discovering the prerequisites between skills requires
significant effort from subject matter experts. The main contribu-
tion of our work is a novel algorithm that simultaneously infers a
prerequisite graph and a student model from data with less human
intervention.

We extend on prior work in significant ways. We optimize the full
structure of skills that captures the conditional independence be-
tween skills, instead of only estimating the pairwise relationships.
Our experiments suggests that this results in better accuracy. More-
over, we argue that our strategy is easier to use because it does not
require manual tuning of parameters. Other methods [2] require
the guess and slip probabilities to be provided as input, or alterna-
tively [4], thresholds to determine the existence of a prerequisite
relationship. Determining these values requires experts’ interven-
tion. COMMAND does not require such tuning.

We analyze how missing values, noise and dataset size can affect
the performance of COMMAND. Further research could explore
additional datasets and baselines. A secondary contribution of our

work is that we develop a methodology to evaluate prerequisite
structures on real student data. We believe that we are the first
to compare prerequisite discovery strategies by how well they can
be used to predict student performance. Therefore, we validate
COMMAND not only with synthetic data, but with two real-world
datasets. Our results suggest that COMMAND improves on the state
of the art because it significantly improves on a recently published
technique.

Learning a prerequisite graph is not merely discovering a Bayesian
network— equivalent Bayesian network structures in fact represent
different prerequisite structures. We believe we are the first to
address this problem. We use domain knowledge to refine the
prerequisite models output using a theoretically motivated method.

6. REFERENCES
[1] Anthony Botelho, Hao Wan, and Neil Heffernan. 2015. The prediction

of student first response using prerequisite skills. In Learning At Scale.
ACM, 39–45.

[2] Emma Brunskill. 2010. Estimating prerequisite structure from noisy
data. In Educational Data Mining 2011.

[3] Yetian Chen and Jin Tian. 2014. Finding the k-best Equivalence
Classes of Bayesian Network Structures for Model Averaging. In
AAAI. 2431–2438.

[4] Yang Chen, Pierre-Henri Wuillemin, and Jean-Marc Labat. 2015.
Discovering Prerequisite Structure of Skills through Probabilistic
Association Rules Mining. In Educational Data Mining. 117–124.

[5] Gregory F Cooper and Edward Herskovits. 1992. A Bayesian method
for the induction of probabilistic networks from data. Machine
learning 9, 4 (1992), 309–347.

[6] Michel C Desmarais, Peyman Meshkinfam, and Michel Gagnon. 2006.
Learned student models with item to item knowledge structures. User
Modeling and User-Adapted Interaction 16, 5 (2006), 403–434.

[7] Nir Friedman. 1997. Learning belief networks in the presence of
missing values and hidden variables. In ICML, Vol. 97. 125–133.

[8] José P. González-Brenes. 2015. Modeling Skill Acquisition Over Time
with Sequence and Topic Modeling. In International Conference on
Artificial Intelligence and Statistics. 296–305.

[9] David Heckerman, Christopher Meek, and Gregory Cooper. 1997. A
Bayesian approach to causal discovery. Technical Report.
MSR-TR-97-05, Microsoft Research.

[10] Tanja Käser, Severin Klingler, Alexander Gerhard Schwing, and
Markus Gross. 2014. Beyond knowledge tracing: Modeling skill
topologies with bayesian networks. In Intelligent Tutoring Systems.
Springer, 188–198.

[11] Daphne Koller and Nir Friedman. 2009. Probabilistic graphical
models: principles and techniques. MIT press.

[12] Robert J Mislevy, Russell G Almond, Duanli Yan, and Linda S
Steinberg. 1999. Bayes nets in educational assessment: Where the
numbers come from. In Uncertainty in artificial intelligence. 437–446.

[13] Judea Pearl. 1988. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann.

[14] Richard Scheines, Elizabeth Silver, and Ilya Goldin. 2014.
Discovering prerequisite relationships among knowledge components.
In Educational Data Mining 2014.

[15] Peter Spirtes, Clark Glymour, and Richard Scheines. 2001. Causation,
prediction, and search. MIT Press.

[16] Jonathan Templin and Laine Bradshaw. 2014. Hierarchical diagnostic
classification models: A family of models for estimating and testing
attribute hierarchies. Psychometrika 79, 2 (2014), 317–339.

[17] Kurt VanLehn. 1988. Student modeling. Foundations of intelligent
tutoring systems 55 (1988), 78.

[18] Thomas Verma and Judea Pearl. 1990. Equivalence and synthesis of
causal models. In Uncertainty in Artificial Intelligence. 255–270.

[19] Annalies Vuong, Tristan Nixon, and Brendon Towle. 2010. A method
for finding prerequisites within a curriculum. In Educational Data
Mining 2011.

Proceedings of the 9th International Conference on Educational Data Mining 53

