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ABSTRACT
In this work we tackled the task of Automatic Short An-
swer Grading (ASAG). While conventional ASAG research
makes prediction mainly based on student answers referred
as Answer-based, we leveraged the information about ques-
tions and student models into consideration. More specifi-
cally, we explore the Answer-based, Question, and Student
models individually, and subsequently in various combined
and composite models through feature engineering. Ad-
ditionally, we extend the exploration of machine learning
methods by utilizing Deep Belief Networks (DBN) together
with other five classic classifiers. Our experimental results
show that our proposed feature engineering models signifi-
cantly out-performed the conventional Answer-based model
and among the six machine learning classifiers, DBN is the
best followed by SVM, and Naive Bayes is the worst.

1. INTRODUCTION
Developing effective Computer-based assessment has been
increasingly gaining its importance over years and it is widely
believed that open-ended problems are more effective to
access student knowledge than multiple choices. The for-
mer require students to generate free text and communicate
their responses and thus student answers are relatively im-
mune to test-taking shortcuts like eliminating improbable
answers. On the other hand, grading student’s free text
answers is often time-consuming and challenging. There-
fore, much research has focused on how to automatically
grade student free text answers. Generally speaking, re-
search to date has concentrated on two sub-tasks: grading
student essays, which includes checking the style, grammar,
and coherence of an essay [13], and grading student short
answers [16, 18, 19], which is the focus of this work. More
formally, [7] defined short answers as those: 1) in the form
of natural language; 2) requiring students to recall exter-
nal knowledge that is not provided by the question; 3) of
which the length ranges between one phrase to one para-
graph; 4) focusing on the correctness of the content rather
than the style; and 5) and are closed, which means that the
answers have to match the specific facts corresponding to

questions. The goal of this work is to explore effectiveness
of various Machine Learning (ML) approaches on Automatic
Short Answers Grading (ASAG). An ASAG system is one
that automatically classify student answers into, correct or
incorrect, based on the referred correct one(s).

Much of the prior research on ASAG is answer-based which
involves applying various Natural Language Processing (NLP)
techniques to extract a wide variety of text-based features di-
rectly from student answers. These features include various
measurements of text similarities between student answers
and the referred correct ones. Often time, the shorter the
student answers, the harder to classify them into correct or
incorrect because the limited text provides fewer lexical fea-
tures. Many classic NLP approaches such as bag-of-words
or keyword matching often fail to work. For example, Table
1 shows an example of student short answer extracted from
our training corpus. In this example, using text similari-
ties alone would fail to recognize that the student’s answer
is correct because it looks quite different from the referred
correct answer.

Table 1: An Example of Student Short Answer.

Tutor: Why are there no potential energies involved in this
problem?
Student: There is no second object that is massive and can
have gravitational energy. (Correct)
Correct Answer: Because the rock is the only object in the
system, there are no potential energies involved.

On the other hand, information about question and student
knowledge can be handily used to improve the effectiveness
of existing answer-based ASAG model. For example, in the
example above if we know that the question is about ”po-
tential energy” and the student’s knowledge on ”potential
energy” is very high, it is more likely that the student will
answer the question correctly even though his/her answer
looks quite different from the correct one. Thus in this pa-
per we will investigate whether the effectiveness of ASAG
can be further improved if we leverage question model, stu-
dent model, or both into the answer-based model. To the
best of our knowledge, this is the first comprehensive study
exploring the effectiveness of feature space from all three
models on the task of ASAG. For simplicity reasons, in the
following we will refer the three models as Answer(Ans),
Question(Ques), and Student (Stu) models respectively.

Prior research on ASAG has explored several classic ML
classifiers such as Näıve Bayes and Decision Tree. In re-
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cent years, Deep Belief Network (DBN) [5] has been suc-
cessfully implemented and applied in a wide variety of real-
world tasks [15,17]. DBN enables the automatic extraction
of representative features via an unsupervised pre-training
and it can learn the latent complex relationship among fea-
tures. Given the potential complex connections among the
features from Ans, Ques and Stu models, we investigated on
leveraging DBN to exploit the more discriminative feature
space to facilitate automatic grading. As far as we know,
this is the first study to apply DBN to the task of ASAG.

To summarize, we investigated on improving ASAG by uti-
lizing DBN together with five classic ML methods and by
extending existing answer-based approaches to leverage a
wide range of state features which are either based on or
generated from Ans, Ques, and Stu models.

2. RELATED WORK
Popular Natural Language Tutors like AutoTutor [11] and
BEETLE II [12] have extensively studied how to automat-
ically understand student Natural Language inputs so that
the system can respond to student’s responses adaptively.
Pulman and Sukkarieh used manually crafted patterns in
the part-of-speech tagged answers for pattern matching with
the correct answer [19]. Their approach is question-specific
in that they applied Näıve Bayes and Decision Tree to auto-
matically generate patterns for each question using a set of
marked answers. Results showed their approach can achieve
an average accuracy of 84%.

Mohler and Mihalcea developed an unsupervised approach
using Knowledge-based and Corpus-based text-to-text sim-
ilarity measures [18]. They used Latent Semantic Analysis
coupled with domain specific corpus built from Wikipedia.
Their resulted measures outperformed other similarity mea-
sures in that the former obtained Pearson correlation r =
0.463 between the computer assigned grades and average of
human assigned grades.

Recently, Microsoft’s Power Grading [2] took a semi-automated
approach based on the observation that similar answers get
similar grades. Thus, instead of directly grading student
answers, Power Grading builds a hierarchy of short-answer
clusters and lets human grader either grade the entire clus-
ter with same score or manipulate the clusters as needed.
Inspired by their work and promising results, we borrowed
some of the features such as length and tf-idf from previous
research into this work.

Our approach differed from previous research in that: 1) un-
like relying solely on answer-based methods, we explored fea-
tures from Ans, Ques and Stu models individually and com-
bined; 2) our models are trained across all questions, that
is, it is question-general instead of building question-specific
classifiers in previous research; 3) previous approaches mainly
involved two or three ML methods while we used a total
of six including the state-of-the-art DBN together with five
other traditional ML approaches.

3. METHODS
In this section, we will briefly describe the features involved
in this study and the ML classifiers applied. For the latter,
we will focus on DBN.

3.1 State Features
To investigate the impact of state features on the task of
ASAG, we compare the effectiveness of various features from
Ans, Ques and Stu models individually and combined. We
also composite new features generated within or across dif-
ferent models.

3.1.1 Answer (Ans) Model
In [7], Burrows et al. identified two categories of answer-
based approaches: corpus-based approaches are based on
mapping the concepts in student answers to those in the
reference correct answers [16], while alignment-based ap-
proaches are based on clustering student answers by some
quality similarity estimates among student answer represen-
tations regardless of the correct answers. Our Ans model in-
cludes both corpus-based features and alignment-based ones.

Based on [2] and [18], we defined five Ans-based features by
measuring the text similarity between student answer and
the correct answer(s). The latter consist of the referred cor-
rect answer and the correct answers generated by students.
More specifically, we have:

• length difference: the length difference (in words) be-
tween the student and the correct answers.
• max-matched idf : the maximum value of idf of matched

words in a student answer. The idf of each word is cal-
culated based on the Bag-Of-Word(BOW) generated
from the word-answer matrix. This is a good mea-
sure to reflect whether prominent keywords in correct
answers show up in the student answer.
• cosine similarity is calculated using tf-idf vectors of

the student answer and the referred correct answers.
• weighted text similarity : Wu & Palmer similarity is a

knowledge-based measure for text similarity [18], which
is based on word similarities. More specifically, we for-
malize the text similarity between the student answer
s and the correct answers c as sentences. We construct
a domain specific word list d for the specific domain
by assigning higher weight to domain specific words.
Then the text similarity is calculated by weighting the
similarities of general words simw(s, c) and those of
domain specific words simd(s, c).

• Latent Semantic Analysis (LSA, Landauer and Du-
mais, 1997): is a computational method which aims
to represent a corpora of natural text using the latent
subspace. This subspace reflects the weight of each
word in each answer so that similar correct answers
share similar weight vector of words.

3.1.2 Question (Ques) Model
In domains such as math and science, it is commonly as-
sumed that the relevant knowledge is structured as a set of
independent but co-occurring Knowledge Components (KCs).
A KC is “a generalization of everyday terms like concept,
principle, fact, or skill, and cognitive science terms like schema,
production rule, misconception, or facet” [21].

In many Intelligent Tutoring Systems (ITSs) such as Cordillera,
completion of a tutor question requires students to apply
multiple KCs. By including KCs in our model, we wish to
guide the learning process in distinguishing between different
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types of questions. Moreover, utilizing KCs is helpful for ex-
ploiting the homogeneity among questions. The central idea
of Ques model is to build a Q-matrix to represent the rela-
tionship between individual questions and KCs. Q-matrices
are typically encoded as a binary 2-dimensional matrix with
columns representing KCs and rows representing questions.
Previous researchers have focused on the task of generating
or tuning Q-matrices based upon a dataset [1, 20]. For the
present work we employ a static Q-matrix manually gener-
ated from domain experts.

Additionally, for each question we also include a feature
named questionDifficulty. It has consistently been selected
as one of the important features in our previous work on
exploring various state features for modeling student learn-
ing [9]. questionDifficulty is defined as difficulty level of a
question and its value is roughly estimated from the training
corpus based on the percentage of answers that were correct
on the question in the training dataset.

3.1.3 Student (Stu) Model
Student modeling is an important component for any inter-
active e-learning environment so that the system can adapt
its behaviors based on student needs and knowledge [3].
There are many techniques for generating student models
and among them, Bayesian Knowledge Tracing (BKT) [10]
is the most widely used. Fundamentally, the BKT model can
be seen as a Hidden Markov Model with two hidden states:
learned and unlearned. They are defined based on whether
a student has mastered the target knowledge or not. BKT
keeps a running assessment of the probability that a student
is in the learned state based on the student’s past history
of performance (e.g. correct, incorrect). BKT assumes that
student learning process is a Markov Chain in that at each
time t+1, the probability of a student has learned the knowl-
edge pt+1 is only dependent on his learning state at time t.

Our Stu model used the outputs of the BKT, that is the
probability that a student is in the learned state after an-
swering n questions, denoted as p(Sn = learned) as state
features. Moreover, our Stu model is KC-specific in that for
each of domain KCs, our model will include one probability
of being in the learned state on the corresponding KC in
the Stu model. Our goal is to use these KC specific proba-
bilities to predict whether the student will answer the next
question correctly. Additionally, we also included student
KC-specific pretest scores which measures student initial in-
coming competence.

Therefore, our final Stu model includes a combination of
KC-specific learning probabilities calculated from BKT and
the student KC-specific pretest scores.

3.1.4 Composite Feature Space
In this part we will explore state features representing the
underlying connections between the Ques and the Stu mod-
els. As described above, KCs are involved in both Ques
and Stu models and thus we hypothesized that a student’s
performance on a problem should depend on the KCs in-
volved in the problem and the student’s performance on
corresponding KCs. Hence, we conduct the Cartesian prod-
uct (CP) using the Ques and Stu models. Additionally, we
applied the clustering on the Stu model based on their learn-

ing states and pretest scores. Compared with the original
features in the Stu model, using student clustering can be
seen as more compact representation. Here we used Gaus-
sian Mixture Model, which is a type of soft-clustering meth-
ods. Similarly, we hypothesized that the students with sim-
ilar patterns in Stu clusters may have similar performance
on certain types of questions and thus we also conduct the
Cartesian product using the student clustering features and
Ques vector.

3.2 Six Classifiers
Prior research on ASAG successfully explored several clas-
sic ML methods which included: Naive Bayes (NB), Logistic
Regression (LR), Decision Tree (DT), Artificial Neutral Net-
work (ANN), and Support Vector Machine (SVM). In recent
years deep learning model has been widely used in computer
vision and image processing. In this paper, we will compare
Deep Belief Networks (DBN) [5] against those five classic
ML methods. Given the space constraints, we only briefly
describe DBN in the following paragraphs.

DBN is one of the most widely implemented deep learning
models. Through the unsupervised pre-training in the first
stage, DBN is able to extract the latent features that are
more representative than the original input features. Given
the input features, DBN first utilizes the stacked Restricted
Boltzmann Machine (RBM) layers to automatically extract
the high-level features. After the feature extraction in pre-
training phase, the weights in these layers are then folded
into neural networks for supervised training. Since the ca-
pacity of feature extraction mainly lies in the pre-training
phase, we now present the mechanism of RBM.

RBM is a restricted version of Markov Random Field. It
consists of two layers of variables, visible units V and hid-
den units H. From the perspective of feature extraction,
V stands for the original feature inputs and H denotes the
extracted feature representation. The joint distribution of
V and H is defined by an energy-based probabilistic model,
as follows:

P (V,H) =
exp(−E(V,H))

Z
,

Z =
∑

V,H

exp(−E(V,H))
(1)

where the energy function E(V,H) is defined to be:

E(V,H) = −V TWH −BTV − CTH. (2)

In the above equation, W denotes the weights between V
and H. Specifically, Wi,j represents the weight between Vi

and Hj , and B, C denote the biases for visible units and
hidden units, respectively. The denominator Z serves as the
normalizer for the probability distribution.

Given that each unit of V or H is independent with other
units in the same layer, the conditional distribution is fully
factorial and can be easily derived. Due to the intractabil-
ity of gradient computation brought by the factor Z, the
training of RBM (i.e., pre-training phase) follows the Con-
trastive Divergence algorithm [14], which executes K steps
of alternating Gibbs sampling to approximate the gradient.
The details can be found in [4].
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4. DATA DESCRIPTION
Our training corpus was collected from Cordillera [8, 21],
a Natural Language ITS that teaches students introduc-
tory college physics. The domain consists of a subset of
the physics work-energy domain, which is characterized by
eight primary KCs including Kinetic Energy, Gravitational
Potential Energy, Spring Potential Energy, and so on. In
Cordillera, students interact with tutor by means of natural
language entries, and currently the Natural Language under-
standing module in Cordillera is using human interpreters
referred as the language understanding wizard [6]. The only
task performed by the human wizards is to match student
answers to the closest response from a list of potential cor-
rect or incorrect responses.

Our training corpus involves 158 students. The data collec-
tion consists of the following stages: 1) background survey;
2) studying textbook and prerequisite materials, 3) taking
a pretest; 3) training on Cordillera, 4) and taking a post
test. In total there are 482 different questions involved in
the training corpus and it takes students roughly 4-9 hours
to complete the training. Our training corpus includes se-
quences of tutorial dialogue interactions between students
and Cordillera, one sequence per student, and the average
number of Cordillera-student interactions is more than 280
per student. For each interaction in a sequence, it consists of
a tutor question, a student answer to the question, and two
output labels correct or incorrect based on human wizards
inputs. Thus, these human manually generated binary labels
function as ground truth in our training corpus.

Based on the definition in [7], our training corpus included
16228 short answers selected from a total of 27868 dia-
logues. The average length of student answers in our cor-
pus is 7.6 words. 61.66% of training corpus is labeled as
“correct” while the rest are labeled as “incorrect”. A series
of standard natural language pre-processings including stop
word removal, tokenization, punctuation removal and word
correction, have been conducted on our training corpus. Ad-
ditionally, we also conducted domain-specific pre-processing,
which includes expanding acronyms to their full forms and
removing quantitative questions with equations.

5. EXPERIMENTS
To evaluate the effectiveness of various features from Ans,
Ques, and Stu models individually, combined, and/or com-
posite features generated from these three models, we use
two ubiquitously implemented classifiers - LR and SVM in
Experiment 1. Then in Experiment 2, we will compare DBN
against five classic ML classifiers on the best feature model
produced in Experiment 1.

5.1 Experiment 1: Exploring Feature Space
For Ans model, we use the five Ans features described in
3.1.1. For Ques model, we include 9 Ques features (one
is questionDifficulty and the other eight are KC-based Q-
matrix features, one feature per KC) and for Stu model,
we include 16 Stu features (8 KC-based learning parameters
and 8 KC-based pretest scores). Generally speaking, our
Experiment 1 can be divided into three stages:

In stage 1, we compare the Ans, Ques, and Stu model indi-
vidually. Our goal is to investigate whether either Ques or

Stu model will be more effective than Ans model for ASAG.
In stage 2, we will compare different ways of combining the
three basic models. Our results from stage 1 show that Ans-
based model alone performs better than either Ques or Stu
model (depicted in Section 6.1.1) and thus we mainly ex-
plore whether to include the Ques and/or Stu models to the
Ans-based model in stage 2. Finally, in stage 3, we will
compare different ways of generating new features from the
three models (depicted in Section 3.1.4) together with the
best model learned from stage 2, which is AQS. Table 2 sum-
marize the types of feature models we explored in each stage.

Table 2: Feature Representations.

Feature Abbr. Construction

Stage 1

Basic

A(ns) Ans Model
S(tu) Stu Model
Q(ues) Ques Model

Stage 2

Combined

AS A + S
AQ A + Q
AQS A + Q + S

Stage 3

Composite

CF1 AQS + SC (Student Clustering)
CF2 AQS + SC + CP(Q,S)
CF3 AQS + SC + CP(Q,SC)

? CP denotes Cartesian Product.

To quantitatively evaluate the effectiveness of different fea-
ture models, we train LR and SVM with 10-fold cross-validation
(CV). LR is widely adopted as the prediction model in in-
dustry for its efficiency and robustness. On the other hand,
SVM is one of the most popular classifier due to its effec-
tiveness and the capability to incorporate different kernels.
Here we adopt RBF kernel for our SVM models.

5.2 Experiment 2: Six Classifiers
In Experiment 2, we evaluate six classifiers with 10-fold
cross-validation using the best feature model from Exper-
iment 1, CF3. The six classifiers are NB, LR, DT, ANN,
SVM and DBN. As for the DBN, we build three hidden
layers, with 74, 34, 10 hidden units respectively and the
learning rate is set to be 0.01.

Among the six classifiers, NB assumes the state features
are conditionally independent given the output label while
the other models do not have such strong assumption and
thus are able to combine multiple features to make predic-
tions. Since there exist latent connections among our ex-
tracted features, we expect that NB would perform poorly
compared to other models. While all five remaining clas-
sifiers can make use of combined features to explore latent
connections among features, their approaches are different:
LR only linearly combines features; DT synthesizes the fea-
tures at different branches to make predictions; the hidden
layers in ANN and the kernel function of SVM can effec-
tively achieve the non-linear feature mapping; while SVM
and ANN utilize the relatively fixed pattern for feature com-
bination, DBN enables the extraction of more representative
features via a separate unsupervised pre-training procedure.
Although the best model CF3 already contains composite
features, we expect the DBN can further leverage the la-
tent connections among features that cannot be manually
captured in CF3.
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6. RESULTS
Five widely used measures, Accuracy, Area Under the Curve
(AUC), Precision, Recall and F-measure are used to evaluate
how well various classifiers performed. For precision, recall
and F-measure, we treat incorrect answers as the positive
class because it is more important for the system to know
when the student answer is incorrect.

6.1 Experiment 1: Exploring Feature Space
In the following, we will report our results from each stage
listed in Table 2. Given that A(ns) (Ans model) is the fun-
damental model studied in previous research, it will be our
baseline model for comparisons across three stages.

6.1.1 Stage 1: Three Basic Models
We first compare Ans, Ques and Stu model separately and
Table 3 shows the 10-fold cross-validation results. In Table
3, the best performance of corresponding classifier with re-
spect to each measure is in bold and the best value of each
measure is marked *.

Table 3: Performance of Basic Models.

Classifier Evaluation A S Q
Accuracy 0.646 0.616 0.633

AUC 0.589 0.499 0.548
LR Precision 0.564 0.025 0.425

Recall 0.342 0.001 0.548
F-measure 0.426 0.002 0.478
Accuracy 0.728∗ 0.540 0.636

AUC 0.654∗ 0.546 0.567
SVM Precision 0.830∗ 0.422 0.551

Recall 0.331 0.572∗ 0.271
F-measure 0.474 0.486∗ 0.364

? The majority class is 0.617.
? ‘∗’ is for the highest value of each measure across all models.

Table 3 shows that all three models beat the majority class
baseline (0.617) except for the case of applying SVM on Stu
model. As expected, when using either LR or SVM, Ans
model outperforms Stu and Ques models on Accuracy, AUC
and precision. For the other two measures, Stu model pro-
vides the best Recall and F-measure when using SVM and
Ques model yields the best Recall and F-measure when us-
ing LR. Moreover, when comparing LR and SVM, Table 3
shows that SVM classifier seems to be more effective than
LR in that the highest values of five measures are all gener-
ated by SVM, marked *. More specifically, for Ans model,
SVM outperforms LR on all the measures except Recall; for
Stu model, SVM outperforms LR on every measure except
for Accuracy; finally, for Ques model, SVM outperforms LR
on three out of five measures, the exceptions are recall and
F-measure.

Overall, while the Ans model generate the best Accuracy,
AUC and Precision, the best Recall and F-measure are gen-
erated using either the Ques model for LR or the Stu model
for SVM. Therefore, we expect combining the Ques and Stu
model with Ans model would result in more effective models.

6.1.2 Stage 2: Three Combined Models
To test the effectiveness of combining multiple features, we
show the 10-fold CV performance of A, AQ, AS and AQS
by applying LR and SVM respectively in Table 4.

Table 4: Performance of Combined Features.

Classifier Evaluation A AQ AS AQS
Accuracy 0.646 0.719 0.712 0.768

AUC 0.589 0.696 0.690 0.753
LR Precision 0.564 0.656 0.663 0.737

Recall 0.342 0.591 0.576 0.671∗
F-measure 0.426 0.621 0.616 0.703
Accuracy 0.728 0.784 0.777 0.822∗

AUC 0.654 0.731 0.733 0.781∗
SVM Precision 0.830 0.880 0.881∗ 0.876

Recall 0.331 0.505 0.513 0.615
F-measure 0.474 0.641 0.649 0.723∗

Table 5: Performance of Composite Features.

Classifier Evaluation A CF1 CF2 CF3
Accuracy 0.646 0.786 0.802 0.810

AUC 0.589 0.769 0.784 0.794
LR Precision 0.564 0.736 0.764 0.774

Recall 0.342 0.692 0.707 0.720
F-measure 0.426 0.713 0.734 0.746

Accuracy 0.728 0.835 0.830 0.848∗
AUC 0.654 0.799 0.824 0.850∗

SVM Precision 0.830 0.887∗ 0.778 0.769
Recall 0.331 0.649 0.795 0.859∗

F-measure 0.473 0.750 0.787 0.811∗

? CF1 AQS + Student Clustering (SC).
? CF2 AQS + SC + Cartesian product(Ques, Stu).
? CF3 AQS + SC + Cartesian product(Ques, SC).

It is observed that by adding either Ques or Stu model into
Ans model, the effectiveness of resulted models is greatly
improved on each of five measures. For example, the Ac-
curacy increases from 0.646 for Ans model to 0.719 for AQ
model, and 0.712 for AS model under LR. We can observe
the same pattern when SVM is applied. For both LR and
SVM classifier, it seems that AQ and AS have comparable
performance.

AQS, the combination of all three models, outperforms ei-
ther AQ or AS for both LR and SVM on all five measures
except on Precision by SVM where AS has a slightly higher
value (0.881) than AQS (0.876). Therefore, it suggests that
Stu and Ques model indeed contribute different information
to ASAG task. Similarly, across three models, Table 4 shows
that the SVM classifier seems to be more effective than LR
in that the best of each of the five measures (those marked
*) are generated by SVM except for Recall where the best
value 0.671 is generated by LR on AQS model.

6.1.3 Stage 3: Three Composite Models
Given that AQS performs as the best model in Stage 2, we
explore whether the effectiveness of classifiers can be further
improved by adding composite features. Table 5 shows the
performance of CF1, CF2 and CF3.

Tables 4 and 5 show that CF1 is more effective than AQS
on every measure when using SVM and on four out of five
measures except on Precision using LR. It suggests that the
using student clustering can indeed further improve the per-
formance of either LR and SVM.

The improvement from CF1 to CF2 and CF3 mainly stems
from the power of Cartesian product. Furthermore, the dif-
ference between CF2 and CF3 lies in the different choices of
features used for Cartesian product. The result shows that
there exists stronger association between the latent student
clusters and Ques model than that between Stu model and
Ques model. Overall, SVM outperforms LR throughout CF1
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to CF3 in that the best of five measures (those marked *)
are all generated by SVM in Table 5.

To summarize, the performance of SVM dominates LR when
using individual feature models, combined models, and com-
posite models. With only one exception, the best of each of
the five measures (those marked *) are all generated by SVM
across all three stages. Finally across the nine models, the
best model for both LR and SVM is CF3 in that CF3 is more
effective than the other eight models on every measures us-
ing LR and on four out five measures except on Precision
using SVM. Therefore, CF3 is selected for Experiment 2.

6.2 Experiment 2: Six Classifiers
Table 6 shows the performance of the six ML classifiers on
CF3: AQS + SC + CP(Q,SC) using 10-fold cross-validation.
From the results, we draw the first conclusion that NB falls
behind other classifiers with a large margin of 18% except
on Recall. As expected, LR, DT, ANN, SVM and DBN
outperform NB in all the evaluations due to the capacity of
combining features and NB’s strong independent assump-
tion. Table 6 shows that DBN yields the highest Accuracy,
AUC, Precision and F-measure while SVM reaches the best
recall value of 0.859 closely followed by DBN. For AUC and
F-measure, we have the values in the increasing order for
NB, LR, DT, ANN, SVM, and DBN. Overall, our results
suggest that DBN performs the best among the six classi-
fiers followed by SVM and NB performs the worst.

Table 6: Comparing the Six Classifiers

Evaluation NB LR DT ANN SVM DBN
Accuracy 0.631 0.810 0.825 0.837 0.848 0.850*

AUC 0.667 0.794 0.813 0.827 0.850 0.890*
Precision 0.511 0.774 0.775 0.791 0.769 0.830*
Recall 0.823 0.720 0.765 0.784 0.859* 0.838

F-measure 0.631 0.746 0.770 0.787 0.811 0.834*

7. CONCLUSION
In this paper we tackled the task of ASAG through feature
engineering and exploration of better ML approaches such as
DBN. For feature engineering, we utilized two other mod-
els: Ques and Stu models and explored various combined
and composite feature representation. Our results showed
that by utilizing the composite features, we obtain an AUC
improvement of around 35% and 30% and F-measure im-
provement of around 75% and 72% on LR and SVM re-
spectively as compared with using Answer-based features
only. The comparisons among different classification mod-
els shows that DBN outperforms all other methods on Ac-
curacy, AUC, Precision and F-measure. On Recall, DBN
performs slightly worse than SVM. Furthermore, the exper-
iment has led to some interesting observations: (1) The clus-
tering of student, as a more compact representation, leads to
more discriminative features when combined with question
features using Cartesian product. (2) While SVM results in
better Accuracy, the composite feature representation brings
less improvement on SVM than LR probably because we
used RBF kernel in our SVM models which allows the clas-
sifier to operate in an infinite-dimension of feature space.
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