
 

 

Analysing and Refining Pilot Training 
Bruno Emond 

National Research Council Canada 
1200 Montreal Road, Ottawa, 

ON, Canada. K1A 0R6 
1-613-993-0154 

bruno.emond@nrc-cnrc.gc.ca 

Scott Buffett 
National Research Council Canada 

46 Dineen Drive, Fredericton, 
NB, Canada. E3B 9W4 

1-506-444-0386 
scott.buffett@nrc-cnrc.gc.ca 

Cyril Goutte 
National Research Council Canada 

1200 Montreal Road, Ottawa, 
ON, Canada. K1A 0R6 

1-613-993-0805 
cyril.goutte@nrc-cnrc.gc.ca 

Ruibiao Jaff Guo 
CAE Defense & Security 

1135 Innovation Dr, Kanata,  
ON, Canada. K2K 3G7 

1-613-247-0342 
jaff.guo@cae.com 

 
ABSTRACT 
Competency based training has become a major thrust in the 
development of instruction in both civilian and military pilot 
training. This paper reports on a joint effort by CAE and the 
National Research Council to identify data analytics methods 
relevant for the analysis, and refinements of competency based 
pilot training. In particular, these methods aim to identify 
correlations between 1) student actions and behaviours while 
engaging in training, and 2) students’ success and incremental 
progression in the corresponding competencies being acquired. 
The paper presents some of our main results in applying sequence 
mining and additive factor modelling to small sets of pilot training 
data.   
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1. INTRODUCTION 
Over the years, CAE has developed many research collaborations 
with universities and government research laboratories. The 
current paper presents some results from a project between CAE1, 
the Advanced Technologies for Learning in Authentic Settings 
(ATLAS) research team from McGill University, and the 
Learning and Performance System Support program at the 
National Research Council Canada. The research efforts were 
focused on the identification of education data mining methods 
with practical outcomes for the improvement of pilot training. The 
main objective is to be able to analyse performance, and use 
competency models in order to refine simulation scenarios and 
CBT courseware. The contributions to the project represent 
different perspectives from sequence mining (descriptive method), 
to logistic regression models (predictive method). The objective 
was to explore the data from different points of view.  

The following section presents an overview of the main trends in 
pilot training including competency, evidence, and scenario-based 
training. The next section briefly presents the data set that was 
used for all the analysis, and the remaining two sections presents 

                                                                    
1 http://www.cae.com/about-cae/corporate-information/faq/ 

the main results of applying sequence mining and additive factor 
modeling to this data. 

2. TRENDS IN PILOT TRAINING 
To address the challenges of pilot training in the early 2000s, civil 
aviation stakeholders like the Civil Aviation Safety Alert (CASA), 
the International Civil Aviation Organization (ICAO), and 
concurrently the United States Air Force (USAF) have been 
promoting competency and evidence based training as a training 
model [1]–[3]. This position was in reaction to hours-based 
training where the number of flight hours or sorties done by a 
pilot determined flight or mission readiness. With the increase of 
flight operation complexities, it became obvious that achievement 
of a certain performance level on a task would be a better 
indication of a pilot competency, than the number of hours of 
practice, even though flight hours could be an indirect measure of 
a competency level.  

There are many views about what a competency is. The 
International Civil Aviation Organization defines a competency as 
“a combination of skills, knowledge and attitudes required to 
perform a task to the prescribed standard” [4]. The USAF has 
developed an elaborate competency framework [5]. The Mission 
Essential Competencies (MEC) framework is intended to blend 
training task lists, and mission essential task lists. The MECs 
incorporate a wide range of pilot competencies, beyond the 
operational requirements, to include teams and inter-team 
competencies [3]. The Federal Aviation Administration (FAA) 
also recognizes that pilot competencies need to be defined at a 
higher-level than simply the low-level operations of an aircraft, 
especially with the increased level of automation because 
automated systems are not adapted to unforeseen situations [6]. 
Competency frameworks are usually the result of an analysis 
performed by subject matter experts who identify key 
competencies based on standards of performance and means to 
measure them.  

Another important trend in pilot training is evidence-based 
training. The ICAO defines evidence-based training as “Training 
and assessment based on operational data that is characterized by 
developing and assessing the overall capability of a trainee across 
a range of core competencies rather than by measuring the 
performance in individual events or manoeuvres” [1]. The 
essential element evidence-based training introduces to 
competency based-training is the reference to operational data as a 
means to identify key competencies, in addition to the analysis 
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performed by subject matter experts.  Evidence-based training 
applies the principles of competency-based training for safe, 
effective and efficient airline operations, while addressing safety 
threats. The term evidence refers to the fact that safety threats are 
identified from actual flight monitoring data, such as those 
provided by the Flight Operational Quality Assurance (FOQA) 
program, Aviation Safety Action Program (ASAP) data for 
business aviation [7], as well as Automatic Dependent 
Surveillance-Broadcast (ADS-B) data.  

A literature review also revealed that a combination of 
competency, evidence, and scenario-based training approaches 
can form the basis for the next generation of pilot training system. 
The combination requires links between the development of 
simulated scenario events and performance measures, both driven 
by training objectives [8]. This combination is well integrated in 
the specification of evidence-based training as defined by the 
ICAO [1], and the focus on scenarios and simulations provides the 
foundation of a strong learner centred approach. 

Simulation scenarios are central to evidence-based training as the 
main instructional content a trainee pilot interacts with, for 
evaluation and learning. The approach is consistent with the 
principles of situated learning theory, which argues that learning 
best takes place in the context in which it is going to be used. 
Scenario-based training is mostly suitable for procedure-oriented 
tasks requiring decision-making and critical thinking in complex 
situations, and is learner centered as the scenario provides a 
unique opportunity for the trainee to perform and acquire 
competencies based on his/her competency level. 

 

Figure 1. Competency, evidence and  
scenario-based training systems 

Figure 1, inspired from [8], tries to capture the relationships 
between competency-based training, evidence-based training as 
flight data monitoring programs feed in information for training 
development at all levels, and scenario-based training which 
constitutes an essential element for providing learner centered 
experiences. In addition to the closed workflow between 
A) training goals and objectives; B) competencies, knowledge, 
and skills; C) tasks; and D) scenarios, Figure 1 distinguishes on 
the left hand side training development including: the 
specification of competency frameworks, sociotechnical task 
analysis, and scenario generation. The right hand side of the figure 
presents key elements related to the measure and evaluation 
including: performance measurement, knowledge component 
assessment, and program evaluation. 

The remaining sections of the paper fall essentially within the 
right hand side of Figure 1 under “Knowledge Component 
Assessment”. The courseware delivery software gathered the 
student learning performance data during the learning process, 
including the sequences of activities selected by the students, 
timestamps, and question answers. 

3. DATA DESCRIPTION 
The data consists of two sets of web training sessions engaging 
students on scenarios requiring information gathering, review and 
assessment of new flight procedures with demands on both 
knowledge and skill acquisition related to taking off and landing 
operations. The two data sets correspond to two separate groups 
of students, and had respectively eight and six students in them. 
Table 1 presents the frequency distribution of events either as 
being assessments or information-gathering events for each 
student in the two groups. The counts in Table 1 refer to the sum 
of single events. For example, student 1 in Group 1 was assessed 
46 times and gathered information 503 times. Essentially, 
information-gathering events refer to pages containing texts or 
videos, and assessment events refer to pages where an evaluation 
of knowledge or skills is performed. Overall the student pilots in 
the first group had a ratio of about 9% of assessment for 
information gathering events, while the pilot students in the 
second group had a ratio of about 13%. The number of 
assessments includes repeated trials on assessment items. Given 
that the following sections focus on specific subsets of 
observations (ex. frequent sequences, or first attempt assessments 
only), Table 1 provides a high-level view and context for these 
learning events analysis.   

Table 1. Distribution of assessment and information events for 
each student in the two groups.  

Students Assessment Information Total 

Group 1    
1 46 503 549 
2 45 497 542 
3 51 514 565 
4 42 495 537 
5 52 477 529 
6 49 512 561 
7 47 547 594 
8 57 478 535 
Group 1 Total 389 4023 4412 
Group 2    
a 42 305 347 
b 55 323 378 
c 37 259 296 
d 34 280 314 
e 41 311 352 
f 37 284 321 
Group 2 Total 246 1762 2008 
Grand Total 635 5785 6420 
 

4. SEQUENCE MINING 
The objective of the application of sequence mining techniques to 
the learner dataset was to test the hypothesis that students who 
acted similarly in training would also perform similarly in the 
assessments. Results indicate that a significant relationship 
between students’ behavioural patterns during training and 
performance on test problems exists.  
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For the analysis in this section, we utilized a data-driven approach 
to classify student activity and behaviour patterns in the web 
training courseware, with the purpose of identifying dependencies 
between the way students interact with the training material, and 
how the students perform on subsequent assessment-based tests 
and exercises. At a high level, the working hypothesis for this part 
of the study is thus that students who behave similarly (i.e. by 
exhibiting similar patterns of navigation activity when interacting 
with the courseware) will perform similarly in the assessments. 

To test this hypothesis, we classified the students into two groups, 
using three different criteria: 1) those who scored above the 
median score on the assessments versus those who scored below 
the median, 2) those who scored above average on assessments 
versus those who scored below, and 3) classification according to 
response similarity. For this final classification scheme, we 
considered similarities in student success on a question-by-
question basis. A distance function was introduced, with the 
distance between two students defined as the number of 
assessment questions for which one student gave the correct 
response and the other gave an incorrect response. K-means 
clustering was then used to divide the students into two groups in 
which in-class distances were minimized. Thus two students in the 
same class were likely to have scored the same (correct or 
incorrect) more often than two students in different classes. This 
particular analysis thus more closely strives to validate the 
working hypothesis that students who behave similarly will 
perform similarly in the assessments.  So, rather than only judging 
similarity between two students only in terms of total score, we 
also took a view of how they scored in relation to each other in 
terms of the number of assessments in which both responded 
correctly or both responded incorrectly. 

For each classification scheme above, the hypothesis is that 
students classified in the same group (i.e. those whose score 
similarly in assessments in terms of total score or response 
similarity) should have exhibited more similarities in how they 
interacted with the courseware during the learning phase. To test 
this, we utilized sequential pattern mining (using the SPAM [9] 
algorithm) to mine sequences of behaviour that were 
discriminative of each group (i.e. sequences of pages visited that 
were found to be highly frequent in one group and highly 
infrequent in the other), and then used leave-one-out cross-
validation to test our ability to correctly classify each student 
based on the existence of these mined behavioural sequences. 

Figure 2 shows the accuracy of our classifier for each 
classification scheme. For example, the leftmost bar indicates that 
we were able to correctly classify whether a student scored above 
or below the median score in 93% of the cases (as well as 
above/below average in 100% of cases and according to response 
similarity in 86% of cases), solely through analysis of behaviour 
patterns exhibited by the students when navigating through the 
courseware. The p-value for each statistic indicates the probability 
of achieving these results (or better) purely by chance. This 
indicates that a significant relationship exists between students’ 
behavioural patterns during training and performance on test 
problems. 

p	=	0.0009
p	=	0.00006

p	=	0.0065

0%

20%

40%
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100%

Above/Below	Median Above/Below	Average Response	similarity
 

Figure 2. Results of sequence classification on students 

To further examine the relationship between behaviour and 
results, we took a closer examination of the similarities between 
students when classified as either above or below average score, 
the scheme that was most successful in the test above. Here we 
generated the set of frequent behaviour patterns exhibited by each 
student, and then computed the Jaccard similarity of each pair by 
quantifying the degree of overlap in the set of frequent patterns 
for each student, where the Jaccard similarity of two sets A and B 
is equal to the size of the intersection of A and B, divided by the 
size of the union. Table 2 summarizes these results by showing, 
for each student, the average similarity to students who placed 
above and below the average. On average, students achieving a 
lower than average score had more similar behaviour to other 
students who achieved a lower than average score, and vice-versa. 
In fact, in all cases but one, each student behaved more similarly 
on average to students in its own group. 

Table 2. Average similarity for each student to students with 
below/above average score 

Below Average Students Above Average Students 

Student 

Similarity 
with below 

average 
students 

Similarity 
with above 

average 
students 

Student 

Similarity 
with below 

average 
students 

Similarity 
with above 

average 
students 

1 0.125 0.080 3 0.059 0.071 
2 0.078 0.068 4 0.100 0.075 
5 0.047 0.033 a 0.051 0.068 
6 0.070 0.061 b 0.063 0.112 
7 0.032 0.026 c 0.024 0.042 
8 0.127 0.075 d 0.063 0.133 
   e 0.040 0.072 
   f 0.059 0.142 

Average 0.080 0.057  0.057 0.090 
 

While there are wide-ranging behaviours that differentiate the two 
groups, Figures 3 and 4 point to two interesting behaviour patterns 
that were particularly prevalent in the initial dataset of 8 students. 
The first instance, in Figure 3, was highly frequent among the 
higher-achieving group, and quite infrequent among the lower-
achieving group. This behaviour shows a lot of activity reviewing 
notes before completing a particular section and moving on. This 
could indicate that this note review had an impact on the success 
of the students. The second instance, in Figure 4, was highly 
frequent among the lower-achieving group, and quite infrequent 
among the higher-achieving group. This behaviour shows a lot of 
activity around calculations regarding take-off. This could provide 
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a clue into where the less successful students are going wrong, 
and thus where improvements to the courseware may be made.  

1. Review_Introduction_1, Review_Introduction_2,  
2. Full_Review_Notes_Mission_Planning_1,  
3. Full_Review_Notes_Landing_Limits_and_Procedures_2,  
4. Full_Review_Notes_Landing_Crosswinds_3,  
5. Full_Review_Notes_Takeoff_Procedure_4,  
6. Full_Review_Notes_Takeoff_Conditions_5,  
7. Full_Review_Notes_Takeoff_Crosswinds_6,  
8. Full_Review_Notes_Landing_Calculations_7,  
9. Full_Review_Notes_Takeoff_Calculations_8,  
10. Full_Review_Notes_ControlUnit_Invalid_9,  
11. Full_Review_Notes_ControlUnit_Calculations_10,  
12. Transition_To_Test-GUI_MAP, 
13. Lesson_Conclusion_Pass 

Figure 3. Example behaviour of the higher-performing group 

 

1. Select_Calculation-Takeoff_Crosswinds_1-  
2. Select_Calculation-Takeoff_Pitch_1-Takeoff_Pitch_2,  
3. GUI_MAP-Calculations_Introduction_1-

Calculations_Introduction_2-
Calculations_Introduction_3- Invalid_11-Invalid_12,  

4. Invalid_14-How_To_Use_Introduction_1-
How_To_Use_Introduction_2,  

Figure 4. Example behaviour of the lower-performing group 

This result has a number of implications. First, it demonstrates a 
tangible correlation between how students choose to navigate the 
courseware and how well they perform on assessments. Second, it 
establishes clear evidence that opportunities exist to predict 
student achievement during the learning phase, when remedial 
action can be taken to improve comprehension. Finally, the ability 
to identify the key behaviours that have the highest impact on how 
a student will perform can facilitate strategic managerial decision 
making on how to direct the flow of student activity through the 
courseware. 

5. ADDITIVE FACTOR MODELS 
The Additive Factor Model (AFM) was chosen because it 
represents a common technique in educational data mining [12]. 
By using this data analysis technique, we were seeking 
estimations for parameters for student proficiencies, as well as 
items difficulty, and competencies easiness.  AFM is a model for 
assessing the quality of an items-to-skills mapping, based on its 
ability to predict empirical observations of student results [10]. It 
may be seen as a generalization of Item Response Theory [11], 
where the response depends not only on item difficulty and 
student proficiency, but also on underlying knowledge 
components (KC) and the sequence in which they are met. In 
AFM, these knowledge components can be associated with 
competencies, skills, or declarative knowledge that are 
responsible for a student’s performance. The mapping between an 
item (question, task, problem) and knowledge components is 
provided in the form of a binary Q-matrix Q=[qik], where qik=1 
indicates that item i is associated to knowledge component k  [13]. 
The probability that a student j will correctly answer an item i is 
modelled using a mixed-effect logistic regression 

𝑃 𝑌!" = 1 𝛼,𝛽, 𝛾 = !
!!!"# (!(!!! !!!!"! !!!!"!!"))!!

         (1) 

where αj is the proficiency of student j (higher proficiency yields 
higher success rate), βk is the easiness and γk the learning rate for 
knowledge component k (higher easiness yields higher success, 

higher learning rate means increased success on subsequent 
trials)2. The observed student sequence is summarized in the 
opportunity tjk, i.e. the number of times student j has met 
knowledge component k. As learning progresses, increasing 
opportunity translates into higher probability of success in items 
associated with that KC. 

Our learner dataset contains 38 items, taken by 14 students (in two 
sessions of eight and six) between zero and four times each, 
resulting in 533 transactions.3 The course designers provided the 
Q-matrix mapping the 38 items to 14 knowledge components 
(Figure 5, where the items are the specific questions or problems 
that the students had to answer or solve, while the knowledge 
components are the underlying knowledge and skills accounting 
for the learner’s performance on those questions or problems.  

 
Figure 5: Q-matrix from courseware designer: 38 items x14 KCs. 

Estimation of the AFM model parameters is done by maximizing 
the likelihood4 on the transactions, with the constraint that 
learning rates are kept positive, and a slight regularization on the 
alpha parameters in order to keep them within the [-3; 3] range. 

5.1 Student Proficiency 
We analyse the proficiency of the two groups of students using 
the estimated alpha parameters. Figure 6 shows that the first group 
of students (1-8) has overall a lower proficiency than the second 
group (a-f). The two students with lower proficiency in the second 
group (b and c) have estimated proficiencies on par with the best 
two students from the first group (3 and 4). Student 5 clearly 
displays the lowest proficiency by far. 

This is partly reflected in the observed success rates, which range 
from 58.5% for student 5, to 100% for student d. We learned post 
analysis that the second group had received an improved set of 
instructions. Although there was no difference between the first 
and second groups in expectations, motivation or engagement 
with the training material, the improved instructions have a clear 

                                                                    
2 Proficiency and easiness values are relative to the other values in 

the set, and should not be interpreted as actual success rates. 
3 Each transaction records one student’s result on one item. 
4 We use a conjugate gradient algorithm. Any optimization 

method would work similarly as the log-likelihood is convex. 
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impact on the estimated proficiency for the second group. This 
validates the effectiveness of the change. 

 
Figure 6: Student proficiency, estimated by AFM. 

 

5.2 Competency Analysis 
We analyse the competencies through the estimated beta and 
gamma parameters. Note that the actual parameter values are 
difficult to interpret separately, as various combinations of beta, 
gamma and opportunity may yield similar probabilities (Eq. 1). 
They do make sense in combination of the base “easiness” beta 
and learning rate gamma, to explain how the probability of 
success changes as the number of opportunity increases. As a 
consequence, rather than looking at actual parameter values, we 
relate them to the corresponding prediction ability. We analyse 
competencies by looking at the probability to fail on items 
associated by each knowledge component on the first three 
opportunities, for a hypothetical student with a proficiency 
parameter of zero. Figure 7 shows this for 11 knowledge 
components (The easiest KCs, 1, 4 and 11, get 0% for both 
predicted and observed error from the first attempts). 

 
Figure 7: Probability of error for several knowledge components. 

Note that due to the constraint that the learning rate is positive the 
probability to fail is always decreasing (Eq. 1). Learning is clearly 
apparent for several competencies (C3, C10 and C12), as shown 
by the clear drop in probability to fail as the KC is addressed. For 
C5 and C6, learning is much slower, and the error rate stays 
around 41%. However, this observation should be mitigated by 
the fact that these knowledge components are only associated with 
one item and always together (Figure 5). There is therefore very 
little data to estimate learning on these competencies, as most 
students took that item only once. When considered in 
combination in item #30, KCs C5 and C6 yield a predicted error 

on this item of 36%. In addition, this points to a possible 
refinement of the Q-matrix: these two knowledge components 
could be merged with no loss of modelling capacity. 

Probability of failure seems consistently high for C8. However, 
Figure 5 shows that this knowledge component always appear 
together with C7 (which also appears alone). Due to the additive 
nature of the AFM model, the actual probability of success for 
items featuring C8 actually combine the easiness and learning 
rates for both C7 and C8, resulting in a probability of failure of 
30.3%. Items involving both C7 and C8 are significantly harder 
than items involving C7 alone, and the AFM model adjusts for 
this fact by estimating a low easiness (high difficulty) for 
knowledge component C8. 

The analysis of the AFM results therefore provides us with non-
trivial insight into 1) the proficiency of the students taking the 
course, and 2) the difficulty and learning rates of the various 
competencies addressed in the course. It also suggests possible 
refinements of the competency framework produced by the course 
designer. Finally, despite the clear difference between the two 
groups of students, we have also observed that the estimates for 
the parameters related to competencies (βk and γk) are consistent 
across the two groups. 

6. CONCLUSION 
To address the challenges of pilot training in the early 2000s, civil 
aviation stakeholders like CASA, ICAO, and concurrently the 
USAF have been promoting competency-based training as a 
training model. In addition to focusing on competencies rather 
than hours, the industry has also brought to bear actual flight 
monitoring data as a source to determine learning objectives. The 
essential element evidence-based training introduces to 
competency based-training is the reference to operational data as a 
means to identify key competencies, in addition to the analysis 
performed by subject matter experts. A literature review also 
revealed that a combination of competency, evidence, and 
scenario-based training approaches can form the basis for the next 
generation of pilot training system. The latter approach being 
consistent with the principles of situated learning theory, which 
argues that learning best takes place in the context in which it is 
going to be used. The paper focused essentially on the assessment 
of knowledge components using sequence mining and logistic 
regression for the purpose of understanding learning processes 
and improving learning scenarios. The data used for these 
analyses was collected in the context of pilot training using a 
scenario-based approach for reviewing basic landing and taking 
off flight operations. 

The objective of the application of sequence mining techniques to 
the learner dataset was to test the hypothesis that students who 
acted similarly in training would also perform similarly in the 
assessments. Results indicate that a significant relationship 
between students’ behavioural patterns during training and 
performance on test problems exists. 

The Additive Factor Model, a model for assessing the quality of 
an items-to-skills mapping based on empirical observations of 
student results, was used to estimate student proficiency and 
knowledge components difficulty. Our analysis indicated a clear 
difference between students from two groups in the data. It also 
helped us identify competencies that are inherently easy, as well 
as hard competencies for which learning allows the probability of 
failure to quickly drop over subsequent attempts. It also suggests 
changes in the competency framework in which knowledge 
components could be merged with no loss of modelling capacity. 
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Together, the application of the descriptive method of sequence 
mining, and the predictive technique of additive factor models, 
provide results that may be used to evaluate and improve 
instructional design.  

Some potential future directions for the project include: 
a) collecting more data, using the same approach for additional 
data sets, and comparing the result; b) developing alternative 
methods, and using the methods on same data sets to test and 
compare results; and c) conducting validation with instructional 
design experts in the relevant domain.  
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