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ABSTRACT
Traditional Knowledge Tracing, which traces students’ knowl-
edge of each decomposed individual skill, has been a pop-
ular student model for adaptive tutoring. Unfortunately,
such a model fails to model complex skill practices where
simple decompositions cannot capture potential additional
skills that underlie the context as a whole constituting an
interconnected chunk. In this work, we propose a data-
driven approach to extract and model potential chunk units
in a Knowledge Tracing framework for tracing deeper knowl-
edge, which is primarily based on Bayesian network tech-
niques. We argue that traditional prediction metrics are un-
able to provide a “deep” evaluation for such student models,
and propose novel data-driven evaluations combined with
classroom studies in order to examine our proposed student
model’s real-world impact on students’ learning.
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1. INTRODUCTION
Knowledge Tracing (KT) [4] has established itself as an ef-
ficient approach to model student skill acquisition in intel-
ligent tutoring systems. The essence of this approach is to
decompose domain knowledge into elementary skills, map
each step’s performance into the knowledge level of each sin-
gle skill and maintain a dynamic knowledge estimation for
each skill. However, KT assumes skill independence in prob-
lems that involve multiple skills, and it is not always clear
how to decompose the overall domain knowledge. Recent re-
search demonstrated that the knowledge about a set of skills
can be greater than the“sum”of the knowledge of individual
skills [8], some skills must be integrated (or connected) with
other skills to produce behavior [11]. For example, students
were found to be significantly worse at translating two-step
algebra story problems into expressions (e.g., 800-40x) than

they were at translating two closely matched one-step prob-
lems (with answers 800-y and 40x) [8]. Also, recent research
that has applied a difficulty factor assessment [1] demon-
strated that some factors underlying the context combined
with original skills can cause extra difficulty, and should be
included in the skill model representation. Meanwhile, re-
search on computer science education has long argued that
knowledge of a programming language cannot be reduced to
simply the “sum” of knowledge about different constructs,
since there are many stable patterns (schemas, or plans) that
have to be taught or practiced [16]. We summarize the above
findings and connect them with a long-established concept
in cognitive psychology called chunks. According to Tulving
and Craik [17], a chunk is defined as “a familiar collection of
more elementary units that have been inter-associated and
stored in memory repeatedly and act as a coherent, inte-
grated group when retrieved”. It has been used to define
expertise in many domains since Chase and Simon’s early
research in chess [2]. We argue that modeling chunks is
important but it hasn’t been well-addressed in the current
Knowledge Tracing framework. In order to identify chunks
in a modern data-driven manner, we propose starting from
automatic extraction of stable combinations between indi-
vidual skills, or between skills and difficulty factors from
huge volumes of data available from digital learning systems.
We think that such chunk units contain different complex-
ity levels, and more complex chunk units can be constructed
from simpler chunk units, so they could and should be ar-
ranged hierarchically. So we propose a hierarchical Bayesian
network which we consider a natural fit for the skill and stu-
dent model, rather than alternative frameworks [1, 14, 12].

Meanwhile, complex skill knowledge modeling has been a
challenge. Starting from simple variants based on tradi-
tional KT [5], more advanced models have been put forward.
However, these student models use a “flat” knowledge struc-
ture, and research works that consider relationships among
skills mostly focus on prerequisite relations [3] or granular-
ity hierarchy [13]. Regarding the data-driven evaluations
of student models, problem-solving performance prediction
metrics [7, 5] have raised some growing concerns [6, 9]. A
recent learner outcome-effort paradigm and a multifaceted
evaluation framework [6, 9] offer promising methods that we
plan to extend. We also plan to conduct classroom studies
that deploy a new adaptive learning system that is based on
our proposed student model.
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2. PROPOSED CONTRIBUTIONS
The first contribution we expect to achieve is to present
a novel perspective and data-driven approach for building
(skill and) student models with chunks. Second, we aim to
present a novel multifaceted data-driven evaluation frame-
work for student models that considers practically impor-
tant aspects. Third, we aim to demonstrate our proposed
model’s impact for real-world student learning such as help-
ing differentiating shallow and deep learning, enabling better
remediation, and ultimately promoting deep learning.

3. APPROACH AND EVALUATION
3.1 Model Construction
Our proposed student model will conduct performance pre-
dictions, dynamic knowledge estimations, and mastery de-
cisions when deployed in a tutoring system. To save space,
we only describe the major components here.

3.1.1 Representing Chunk Units
To start, we plan to use the Bayesian network (BN) frame-
work for the final skill and student model. We call our pro-
posed model conjunctive knowledge modeling with hierarchi-
cal chunk units (CKM-HC) (Figure 1).

- The first layer consists of basic individual skills (e.g.,
K1) that capture a student’s basic knowledge of a skill.

- The intermediate layers consist of chunk units (e.g.,
K1,2), which can be derived from smaller units that cap-
ture deeper knowledge.

- The last layer consists of Mastery nodes (e.g., M1) for
each individual skill, which reflects the idea of granting a
skill’s mastery based on the knowledge levels of relevant
chunk units. We now assert mastery of a skill by comput-
ing the joint probability of the required chunk units being
known.

Figure 1: The BN structure of CKM-HC, with pairwise skill
combinations as chunk units, in one practice time slice.

3.1.2 Identifying Chunk Units
We consider the following two frameworks to extract chunk
units, with Bayesian network as the major framework:

- Regression-based feature selection or structure learn-
ing framework. Based on regression models, many ef-
ficient feature selection or structure learning methods al-
ready exist. However, the limitations of this approach in-
clude: 1) the compensatory relationship among skills is
assumed; 2) it’s hard to realize the evidence propagation
among skills in a probabilistic way; and 3) it doesn’t pro-
vide the explicit knowledge level of each individual skill.
Still, we might be able to use this framework for exploratory
analysis or for pre-selection, due to its potential efficiency.

- BN-based score-and-search framework. We can em-
ploy a search procedure for learning the structure; namely,
what chunk units to include. However, if we don’t limit
the search space, the complexity will grow exponentially.
As a result, we propose a greedy search procedural that
requires a pre-ranking of the candidates for chunk units.
During each iteration, it compares the cost function value
of the network with a chunk unit that is newly incorpo-
rated with that of the optimal network so far.

To rank chunk units, we use the following general informa-
tion that should be available across datasets or domains:

- Frequency information based on skill to problem q-
matrix. Chunk units with higher frequencies, according
to the q-matrix, can be considered to be more typical or
stable patterns to be modeled.

- Performance information based on student perfor-
mance data. We can employ various strategies, such as
giving higher scores to chunk units with larger difference
in the estimated difficulty between the current chunk unit
and its hardest constituent skill (unit).

- Natural language processing on the problem (so-
lution) text. We can consider information such as the
textual proximity and semantics that can be obtained by
automatic text analysis (or natural language processing).

To further improve the interpretability, robustness and gen-
erality, we can also use some domain-specific knowledge to
extract more meaningful or typical chunk units. For exam-
ple, in programming, we can use the abstract syntax tree as
in [15]. However, there are still two other challenges:

- Model run-time complexity. Since the network in-
volves latent variables, we use Expectation-Maximization,
which computes the posteriors of latent variables in each
iteration, which can be a time-consuming process.

- Temporal learning effect. It is also challenging to con-
sider the temporal learning effect in such a complex net-
work. As a first step, we ignore it during the model learn-
ing process, while maintaining the dynamic knowledge es-
timation during the application phase, as in [3].

We expect to explore some efficient implementations and
techniques (such as re-using some posteriors or using ap-
proximate inference) to address these two challenges.

3.2 Model Evaluation
We will conduct both data-driven and classroom study eval-
uations to compare our model with alternatives, including
traditional KT-based models [4, 5], and BN-based models
with chunk units incorporated in a non-hierarchical way.

3.2.1 Data-driven Evaluation
First, we will conduct data-driven evaluations that consider:
- Mastery accuracy and effort. The basic idea of the

mastery accuracy metric is that once a student model as-
serts mastery for an item’s required skills, the student
should be very unlikely to fail the current item. Mean-
while, the mastery effort metric empirically quantifies the
number of practices that are needed to reach mastery of a
set of skills. These metrics extend our approach in [6].

- Parameter plausibility. This metric investigates how
much the fitted parameters can satisfy a model’s assump-
tions and can be interpreted by a human. This is based
on our recent Polygon evaluation framework [9].
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- Predictive accuracy of student answers. This metric
evaluates how well the new model predicts the correctness
of a student’s answer, or the content of a student’s solu-
tion, based on the problem type.

3.2.2 Classroom study evaluation
We will conduct classroom studies, based on an adaptive
learning system that applies our new student model. This
system will contain a new open student model interface and
a new recommendation engine that will be enabled by our
new student model. We will focus on following questions:

1. Do students agree more with the knowledge and mas-
tery inference obtained from the new student model?

2. Does the new student model increase students’ aware-
ness of pursuing true mastery?

3. Does the new student model enable more helpful rec-
ommendation or remediation?

4. Do students using the new adaptive learning system
enabled by the new student model achieve deeper learn-
ing which is measured by specifically designed tests?

4. CURRENT WORK
We have conducted preliminary studies with skill chunk units
extracted from pairwise skill combinations on a Java pro-
gramming comprehension dataset and a SQL generation dataset
collected across two years from University of Pittsburgh
classes. Due to the runtime limitation, we employed a heuris-
tic approach to choose skill combinations (without a com-
plete search procedural), and conducted data-driven eval-
uations (by 10-fold cross validation). We found that in-
corporating pairwise skill combinations can significantly in-
crease mastery accuracy and more reasonably direct stu-
dents’ practice efforts, compared to traditional Knowledge
Tracing models and its non-hierarchical counterparts. The
details of this study are reported in [10].

5. ADVICE FOR FUTURE WORK
I am seeking advice on any of the following aspects:

1. Is this idea both significant and valuable? For exam-
ple, can it be connected or applied in a broad range of
tutoring systems or domains?

2. Are there any datasets, domains or tutoring systems
suitable for exploring this idea? What should be the
desirable characteristics of the datasets?

3. Are there better representations for skill chunks within
or beyond Bayesian networks (e.g., Markov random
field, case-base reasoning)? Are there better techniques
to identify such units?

4. Are there any suggestions for the overall procedures of
this research? For example, should we do a user study
to investigate this phenomenon before data mining? If
so, how should we design such a study, since we can
only test limited chunk units? Should we construct
ideal datasets where chunk units are expected to be
significant, rather than focusing on existing datasets?

5. How should we situate our definition of chunk units in
a broader context considering different domains, prob-
lem (task) types and cognitive psychology theories? Is
chunk the right word? What’s its connection with pro-
duction rules, declarative and procedural knowledge,
Bloom’s taxonomy?
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