
Personalization of Learning Paths in Online Communities
of Creators

Mingxuan Sun
∗

Division of Computer Science and Engineering
Louisiana State University

msun@csc.lsu.edu

Seungwon Yang
School of Library and Information Science
Center for Computation and Technology

Louisiana State University
seungwonyang@lsu.edu

ABSTRACT
In massive online communities of creators (OCOCs), one of
the core challenges is to encourage users to learn to create
original contents using basic components. Recommending
the right learning components at the right time is criti-
cal for improving user engagement and has not been fully
studied due to the unstructured nature of online commu-
nities. To address the problem, we propose in this paper
a novel recommendation model which integrates Cox’s sur-
vival analysis and collaborative filtering. Our model can
incorporate factors such as user learning history and social
engagements, which provides us insights in improving the
personalized service. We apply our method to the user data
from Scratch online platform and demonstrate the perfor-
mance of the model.

1. INTRODUCTION
In recent years, the number of online learning communi-
ties (OCOCs) has increased exponentially as evidenced by
successful platforms such as Scratch online1. These online
communities offer flexible learning environment where users
can create projects (e.g., games, art designs), share projects,
and engage with like-minded users in the community. One of
the goals is to foster learning programming concepts through
developing and sharing projects among its users based on in-
teractions in the community [11]. Previous studies [7] have
found that creating and sharing projects is the gateway to
other online social activities including commenting and fol-
lowing. However, only about 29% of Scratch users would like
to share their projects and about half of them contribute no
more than one project.

One way to improve user engagement is to track users’ learn-
ing history and recommend contents tailored to each indi-
vidual. For example, Scratch users learn to create projects
by manipulating basic programming blocks such as “goto”,

∗Corresponding author.
1https://scratch.mit.edu/

“changecolor”, and“doIf”. Each block is categorized in a cer-
tain Computational Thinking (CT) concept [6]. Users are
expected to learn CT concepts such as “motion” by manip-
ulating blocks such as “goto”, “bounce”, and “turn”. Users
may follow different learning paths over time. Based on pro-
gramming blocks that each user has used in his/her previous
projects, we can recommend particular blocks, concepts, or
projects tailored to the individual. For instance, for users
who are interested in animation projects with some basic
motion blocks such as “goto”, the system can recommend
projects that have more advanced motion blocks such as
“bounce”.

In addition to what to recommend, when is a good time
to recommend is another important factor to consider since
suggesting blocks to users at the right time may influence
learning effectiveness and efficiency. For example, if a user is
still struggling with basic motion techniques such as “goto”,
it may not be a good idea to introduce a project or a more
advanced programming concept such as“turn”or“direction”.
Our goal is to alleviate the high dropout rates in the early
stage through personalization of the learning path.

In this paper, we propose a model to learn the probability
of a user’s exposure to a certain learning component at a
particular time. The probability of exposure is estimated
based on a collaborative filtering model, which recommends
the user the items favored by the like-minded. The condi-
tional probability of a user being exposed to a given item at
a particular time is modeled by the Cox proportional hazard
model from survival analysis.

2. RELATED WORK
Early studies on learning behavior analysis for OCOCs have
been based on case-studies evaluating learning process qual-
itatively [5, 12]. Other attempts [3, 7] have focused on clus-
tering user behaviors based on types and volumes of users’
online activities. A recent work by Yang et al. [14] modeled
informal learning trajectories quantitatively as the growth
of cumulative usage of programming blocks by each user.

Personalization approaches that are based on user behaviors
have been widely studied in different types of Web services
such as e-commerce. In e-commerce, most personalization
approaches focus on recommending users the items that have
been favored by like-minded users based on their purchase
history. Traditional recommendation algorithms are mem-
ory based methods including vector similarity and correla-

Proceedings of the 9th International Conference on Educational Data Mining 513

!" !"#$

%&'()*

+!',)-.&'/*012

+!',)-34!42

5

5

Figure 1: Time-aware recommendation. The occur-
rence time of user-item interaction is modeled using
survival analysis. Our goal is to predict the most de-
sired learning item i at a particular time t for each
individual user u.

tion [2]. The state-of-the-art methods including the one that
won the Netflix competition [9] are based on matrix factor-
ization. The time factor in personalization services largely
affects the user satisfaction of the service [13, 10]. Our con-
tribution in this paper lies in that we incorporate both the
Cox model and collaborative filtering to provide personal-
ized recommendation for online learners.

3. METHOD
In OCOCs, users create and share projects consisting of ba-
sic items such as programming blocks in Scratch. Each item
belongs to a certain category. Based on user-item interac-
tion histories, we would like to suggest items tailored to each
user at a particular time. To achieve this goal, we propose
to estimate the joint probability p(u, i, t) = p(t|u, i)p(u, i),
where p(u, i) is the probability of user u interacting with
item i and p(t|u, i) is the conditional probability of user u
interacting with item i at time t.

We model the occurrence time t of the event that user u in-
teracts with item i using the Cox model in survival analysis.
Survival analysis is used to estimate the probability of the
occurrence of an event p(event in [t, t + ∆t]) such as when
a patient fails to survive. In the online learning context,
our task is to estimate the probability of the occurrence of
exposing to a specific learning block for each user, which is
p(t|(u, i)). As shown in Figure 1, in the observed sequences
of user-item interactions, a user builds a project with a set
of items (e.g., “isequal” and “goto”) at time tk. Then item
i is used again in another project of the same user at time
tk+1. Let xk be the covariates associated with user u at time
tk. We are interested in predicting the time gap tk+1 − tk.

Let λ(t) denote the instantaneous rate of event happening at
time t following the last event given the covariates xk, that
is λ(t) = P (T = t | T ≥ t). The Cox model assumes that
the covariates only affect the magnitude of each individual
hazard rates. Formally, for an individual observation with
covariates xk, the hazard at time t is:

λ(t) = λ0(t) ∗ exp(xTk β), (1)

where λ0 is the non-parametric baseline hazard function, xk
is the covariates, and β is the regression coefficient. The log
likelihood of observing the occurrences is:

logL =

K∑

k=1

{
dk log λ(tk)−

∫ tk

0

λ(τ)dτ

}
, (2)

where dk is a censor indicator, taking the value one if event

occurs at time tk or the value zero if event does not occur till
time t by the end of observation window. The parameters β
and the baseline hazard λ0 can be estimated by maximizing
the log partial likelihood with Breslow’s approximation [4].

We further estimate the probability p(u, i) of a user favoring
a particular item (e.g., block) by adopting collaborative fil-
tering (CF) recommendation algorithms. User interactions
contain substantial information to improve recommendation
accuracy. For example, in Scratch, users play with a set of
programming blocks to develop a project. Therefore, the
frequency of each type of block may indicate their prefer-
ences. Based on the previous learning history, the system
can predict interesting blocks tailored to individual taste.
Collaborative filtering methods focus on detecting users with
similar preferences and recommending items favored by the
like-minded. Algorithms range from similarity based CF
methods [2] to matrix factorization based CF methods pop-
ularized by the Netflix Prize Competition [9].

Let rui denote the observed preference of user u for item i,
where u = 1, 2, . . . ,m and i = 1, 2, . . . , n. The pairs (u, i)
are stored in the set O = {(u, i) | rui is observed}. Since
the observed ratings or event frequencies are very sparse,
matrix factorization is used to learn latent features of both
users and items in a lower dimensional space such that the
product of each user-item pair can best approximate the
ratings. Specifically, let θu and vi denote latent features
for user u and items i, where θu and vi are k-dimensional
vectors. The latent features can be estimated by minimizing
a prediction loss function between the predicted ratings and
true ratings of users. That is,

min
Θ,V

∑

(u,i)∈O

(rui − θ>u vi)2, (3)

where Θ = [θ1, θ2, . . . , θm] is a k × m matrix and V =
[v1, v2, . . . , vn] is a k × n matrix. A gradient descent based
method [9] can be used to estimate latent features. The
probability of user favoring an item p(u, i) can be generated
using a softmax function:

p(u, i) =
exp(rui)∑n
j=1 exp(ruj)

, (4)

4. EXPERIMENTAL RESULTS
We evaluate the model performance through two steps: time-
to-return prediction and time-aware recommendation. In
the first step, for every user-item interaction (u, i), we esti-
mate the probability of the next occurrence at time t and
use the expected value of the time as the predicted time to
return. In the second step, for each user u at a particular
time t, we rank each item i by the joint probability p(u, i, t)
and recommend top-K items. We present the experimen-
tal details including data collection, evaluation metrics, and
competing baselines.

4.1 Data Collection
We apply our method to user data which was released in
spring of 2014 from Scratch online2. Users can create a
project by programming with basic components called blocks.
Each block can be categorized into one or more CT concepts.

2https://llk.media.mit.edu/scratch-data/

Proceedings of the 9th International Conference on Educational Data Mining 514

Table 1: Covariate analysis for CT concept “condi-
tionals”. *** p<0.001, ** p<0.01, * p<0.05, . p<0.1

Covariate Name Coefficient P-Value
is.remix 0.190556 0.000593 ***

is.self.remix -0.140119 0.062772 .
is.remixed 0.447668 2.44e-15 ***

like 2 or more 0.226432 0.001440 **
follow 2 or more 0.262599 0.000346 ***

comments 2 or more 0.478668 < 2e-16 ***
conditionals experience 0.332191 1.14e-08 ***

operators experience -0.074161 0.236036
data experience -0.157914 0.010259 *

We adopt the the mapping table from blocks to CT concepts
as suggested in [6]. Users are encouraged to share their
projects and interact with others by commenting projects,
favoring projects, or following other users. For each user,
the dataset includes the project details including block us-
age and timestamps. It also maintains tables of different
types of social interactions including user follower-followed
relationship and comments. The user history data collected
from December 2011 to March 2012 are used to create the
training and the testing datasets. Possible spam users who
create more than 100 projects in a day are filtered out. The
remaining data contains 22415 users and 170 learning blocks
with 6 CT concepts. All user records observed during De-
cember 2011 to February 2012 are used to train the model
through cross-validation and all user records during March
2012 are used for testing.

The following covariates are used to estimate the Cox model.
Covariates related to user activity history include the num-
ber of days since registration and the gap since last lo-
gin. User social interaction covariates include the number
of projects liked, the number of friends followed, and the
number of comments on projects. User project details in-
clude the number of projects created, the number of types
of blocks, and the number of concepts. We collect user co-
variates on a daily basis and predict the days till the user’s
next event. Users who had not been exposed to the event
by the end of the time window were censored.

4.2 Performance Evaluation
In the first step “time-to-return prediction”, for every block
pair (u, i), we estimate the probability of the next occurrence
at time t and treat the expected value of the time as the
predicted time to return. Since the data are sparse, a direct
estimation of a survival model for each block will be noisy.
Instead, we train a Cox model for each CT concept using
the interactions events of blocks belonging to that concept.
To evaluate the performance, we predict the expected time
from the learned density function and compute the Rooted
Mean Square Error (RMSE) with respect to the true time.
We compare the Cox model against the baselines including
linear regression and decision tree regression. Smaller RMSE
values indicate better performance.

The importance of covariates for predicting each individual
user’s exposure to CT concepts “conditionals” and “data”
are shown in Tables 1 and 2. Both tables show the co-
variates’ names, the regression coefficients and the signif-
icance scores. A positive regression coefficient for a vari-

Table 2: Covariate analysis for CT concept “data”.
*** p<0.001, ** p<0.01, * p<0.05, . p<0.1

Covariate Name Coefficient P-Value
is.remix 0.15007 0.018629 *

is.self.remix -0.18239 0.037235 *
is.remixed 0.52571 3.33e-16 ***

like 2 or more 0.23287 0.005221 **
follow 2 or more 0.20475 0.023510 *

comment 2 or more 0.54465 < 2e-16 ***
conditionals experience 0.03648 0.605257

operators experience 0.14616 0.041800 *
data experience 0.12105 0.076548 .

able implies a higher hazard if the value of the variable is
high. Both tables show that the regression coefficients for
the variable “is.remixed.bool” are positive. It indicates that
if a user’s project is remixed by others, the hazard rate of
observing the user’s next event will increase by a factor of
exp(0.190556) − 1 compared with the baseline hazard. On
the contrary, a negative regression coefficient implies a lower
hazard, which means the probability of user interacting with
the blocks belonging to that concept will be smaller. The
value of the coefficient is statistically significant at different
significance levels. We only show the covariates with highest
significant levels.

As shown in the tables, for both CT concepts “conditionals”
and “data”, for users who share projects later remixed by
others, it is more likely that these users will be back creating
projects in the future. Interestingly, users who remix others’
projects will be more likely to create projects than those who
remix their own projects. In addition, users who like two or
more projects, who follow two or more friends, and who
have two or more comments are more likely to create and
share projects in the future than those who have no social
interactions. This implies that social interactions help users
to learn and share. In addition, we can see that users who
have built blocks in the concept“conditional”are more likely
to build blocks falling into the same concept. Interestingly,
users who have built blocks in the concepts “operator” and
“data” are more likely to build blocks in the concept “data”.

We then use the estimated model to predict the time to the
next event in each CT concept. Table 3 displays the root
mean square error (RMSE) for the return time prediction us-
ing the Cox model and baselines, respectively. For concepts
“loops”, “conditionals”, “operators”, and “data”, the hazard
based approach outperforms all the other baselines. For con-
cept “event”, the hazard based approach performs very close
to linear regression and both of them perform better than
the others. All the baselines do not model the underlying
temporal patterns in the observed sequences.

For the final step “time-aware recommendation”, suppose
the testing event of user u occurs at time t, we compute the
probability p(u, i, t) of the user favoring an item i at time t
for each item i and rank among all items by probability. Ide-
ally, the observed items that the user actually interacts with
should appear on top positions. In information retrieval,
we focus on the evaluation accuracy on top positions us-
ing several standard metrics including precision at k (P@k),
Mean Average Precision (MAP) and Normalized Discounted

Proceedings of the 9th International Conference on Educational Data Mining 515

Table 3: RMSE comparison for user return time pre-

diction. Smaller values indicate better performance.
Loops Events Conditionals Operators Data

Linear
Regres-
sion

9.13 9.20 8.94 8.79 8.68

Decision
Tree Re-
gression

9.33 9.41 9.13 9.00 8.80

Cox
model

9.04 9.25 8.63 7.97 7.62

Table 4: Comparison of recommendation accuracy.
P@1 P@3 P@5 MAP@20 NDCG@20

NMF 0.78 0.70 0.64 0.71 0.67
SurvMF 0.84 0.72 0.64 0.72 0.68

Cumulative Gain at k(NDCG) [8]. We compare with the
state-of-the-art baseline non-negative matrix factorization
(NMF) [1]. We follow the standard procedure in collabora-
tive filtering to estimate the model using the user data in
the training set and evaluate the performance of the predic-
tion in the test set. Specifically, the user records observed
before March 2012 are used to train and the user records in
March 2012 are used to test. The data contains the rating
of each user-block pair, where the rating corresponds to the
categorization of event occurrences. The maximum rating is
6 for six or more event occurrences. At the time of the test-
ing event, we compare the ranked list with ground truth. As
shown in Table 4, since our method (SurvMF) integrates the
survival model into the matrix factorization to capture the
temporal dynamics of user-item interaction, it can achieve
better performance.

5. CONCLUSIONS AND FUTURE WORK
In this work, we have focused on personalization of learn-
ing path in massive online communities of creators. One
of the main challenges in online learning is high dropout
rates in the early stage due to cognitive overload. To allevi-
ate the problem, we propose a novel model integrating the
Cox model and matrix factorization to recommend the right
learning contents at the right time. The model can incor-
porate factors such as user learning history and social en-
gagements. In addition, the latent features learned through
matrix factorization further improves the recommendation
accuracy. Empirical evaluations on real world data demon-
strate the performance of our model.

References
[1] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca,

and R. J. Plemmons. Algorithms and applications for
approximate nonnegative matrix factorization. Compu-
tational statistics & data analysis, 52(1):155–173, 2007.

[2] J. Breese, D. Heckerman, and C. Kadie. Empirical anal-
ysis of predictive algorithms for collaborative filtering.
In Proc. of the 14th Conference on Uncertainty in Ar-
tificial Intelligence, 1998.

[3] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and
S. White. Visualization of navigation patterns on a
web site using model-based clustering. In Proceedings

of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 280–284.
ACM, 2000.

[4] D. R. Cox. Regression models and life-tables. Journal of
the Royal Statistical Society. Series B (Methodological),
pages 187–220, 1972.

[5] A. Dahotre, Y. Zhang, and C. Scaffidi. A qualitative
study of animation programming in the wild. In Pro-
ceedings of the 2010 ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measure-
ment, ESEM ’10, pages 29:1–29:10, New York, NY,
USA, 2010. ACM.

[6] S. Dasgupta, W. Hale, A. Monroy-Hernández, and
B. M. Hill. Remixing as a pathway to computational
thinking. In ACM Conference on Computer-Supported
Cooperative Work and Social Computing, pages 1438–
1449. ACM Press, 2016.

[7] D. Fields, M. Giang, and Y. Kafai. Understanding col-
laborative practices in the scratch online community:
Patterns of participation among youth designers. To
see the world and a grain of sand: Learning across lev-
els of space, time, and scale: CSCL 2013 Conference
Proceedings, 2013.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on In-
formation Systems, 20(4):422–446, 2002.

[9] Y. Koren. Factor in the neighbors: Scalable and ac-
curate collaborative filtering. ACM Transactions on
Knowledge Discovery from Data, 4(1):1–24, 2010.

[10] J. Lehmann, M. Lalmas, E. Yom-Tov, and G. Dupret.
Models of user engagement. In User Modeling, Adap-
tation, and Personalization, pages 164–175. Springer,
2012.

[11] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, and Y. K. B. Silverman.
Scratch: programming for all. Communications of the
ACM, 52(11):60–67, 2009.

[12] C. Scaffidi and C. Chambers. Skill progression demon-
strated by users in the scratch animation environment.
Int. J. Hum. Comput. Interaction, 28(6):383–398, 2012.

[13] J. Wang and Y. Zhang. Opportunity model for e-
commerce recommendation: right product; right time.
In Proceedings of the 36th international ACM SIGIR
conference on Research and development in informa-
tion retrieval, pages 303–312. ACM, 2013.

[14] S. Yang, C. Domeniconi, M. Revelle, M. Sweeney,
B. Gelman, C. Beckley, and A. Johri. Uncovering tra-
jectories of informal learning in large online communi-
ties of creators. In Proceedings of the Second (2015)
ACM Conference on Learning@ Scale, pages 131–140.
ACM, 2015.

Proceedings of the 9th International Conference on Educational Data Mining 516

