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ABSTRACT

We have been incrementally adding data-driven methods
into the Deep Thought logic tutor for the purpose of creating
a fully data-driven intelligent tutoring system. Our previous
research has shown that the addition of data-driven hints,
worked examples, and problem assignment can improve stu-
dent performance and retention in the tutor. In this study,
we investigate how the addition of these methods affects stu-
dents’ demonstrative knowledge of logic proof solving using
their post-tutor examination scores. We have used data col-
lected from three test conditions with different combinations
of our data-driven additions to determine which methods
are most beneficial to students who demonstrate higher or
lower knowledge of the subject matter. Our results show
that students who are assigned problems based on profil-
ing proficiency compared to prior exemplary students with
similar problem-solving behavior show higher examination
scores overall, and the use of proficiency profiling increases
retention and reduces the amount of time taken in-tutor for
lower performing students in particular. The results from
this study also helps differentiate the behavior of higher and
lower performing students in tutor, which can allow quicker
interventions for lower proficiency students.

Keywords
Data-driven Methods, Proficiency Profiling, Tutoring Sys-
tems

1. INTRODUCTION

We have been incrementally adding data-driven methods for
problem assignment[9, 10], hint generation[3], and worked
examples[11] to the Deep Thought logic tutor to create a
fully data-driven tutoring system. While we have observed
improvements in student retention and tutor scores with
each of these additions, we have not studied the difference in
post-tutor examinations when these methods are combined
in different test conditions. We seek to understand how the
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specific methods of problem assignment and combination of
hints and worked examples may have impacted student per-
formance on related questions on the course midterm exam.

In this paper we compare two classrooms of students us-
ing different test conditions of Deep Thought, with different
combinations of problem assignment, hints and worked ex-
amples. Students’ knowledge of logic were evaluated in two
problems on a mid-term exam, and these scores were used to
differentiate high and low proficiency students for our analy-
sis. The results from our analysis show that high performing
students benefit most from problem-solving opportunities,
while low performing students benefit most from problem as-
signment based on proficiency profiling, comparing current
students to prior exemplary students with similar behav-
ior. We conclude that the use of proficiency profiling is the
most effective method for increasing retention and reducing
time spent in the Deep Thought tutor, and result in higher
overall examination scores. The results from this study also
help differentiate the behavior of higher and lower perform-
ing students in tutor, allowing for quicker interventions for
lower proficiency students who need additional instructional
support.

2. RELATED WORK

Koedinger et al.[6] summarized the general process of intelli-
gent tutoring systems: the system selects an activity for the
student, evaluates each student action, suggest a course of
action (either via hints, worked examples, or another form
of feedback), and finally updates the system’s evaluation of
the student’s skills. An effective tutor should adapt instruc-
tion according to the student’s current knowledge level [1].
However, in order to make instructional decisions, most ITSs
either use fixed pedagogical policies providing little adapt-
ability, or expert-authored pedagogical rules based on exist-
ing instructional practices [1, 14]. Intelligent tutoring sys-
tems with data-driven methods can be more adaptive by
leveraging previous student data in order to complete one
or more of these steps. Data-driven approaches to mak-
ing effective pedagogical decisions — in particular selecting
problems, when to apply worked examples, and the type of
hint or feedback to provide — would mostly bypass the need
for expert involvement in creating and improving the effec-
tiveness of ITSs. In practice, incorporating student data
has been shown to increase learning efficiency and predict
student behavior. This, in particular is why we use data-
driven knowledge tracing (DKT) of rule applications within
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the Deep Thought logic tutor to facilitate profiling of stu-
dents’ proficiency.

In the remainder of this section, we describe the Deep Thought
logic tutor and the data-driven additions implemented. We
then describe the system and data used to evaluate the ef-
fectiveness of these data-driven methods in Deep Thought.
After reporting the results of this evaluation, we discuss the
implications for future design decisions in the tutor, and
present our conclusions.

2.1 The Deep Thought Tutor

We have been examining the potential for data-driven meth-
ods to improve learning gains in a complex problem solv-
ing domain by incrementally augmenting the Deep Thought
logic tutor. Deep Thought is a tutor for graphically con-
structing propositional logic proofs. Deep Thought presents
proof problems consisting of logical premises and a conclu-
sion to be derived using logical axioms. Deep Thought is
divided into 6 levels of logic proof problems. In previous
work with the Deep Thought logic tutor, we have been im-
plementing data-driven methods for several of the intelligent
tutor steps. We implemented a data-driven mastery learning
system (DDML) to track student actions and assign appro-
priate problems based on the student’s current level of profi-
ciency [9]. The problem set was split into two tracks: a high
proficiency track and a low proficiency track for Levels 2-6,
with Level 1 containing a common set of problems for initial
track assignment. We tracked student actions throughout
their time in the tutor, and in particular their application of
logical rules to construct logic proofs. Based on their correct
or incorrect application of logical rules, the DDML updated
a set of rule scores, one score for each logical rule. At the end
of each level, the students’ rule scores were weighted based
on expert-determined priorities; rules deemed by experts
to be of high importance to solving the problems in that
level were weighted higher than rules that were not. These
weighted scores were summed together, and compared to the
average rule scores in the previous semester’s data; based
on this comparison, students were assigned to the higher or
lower proficiency path. We tested Deep Thought with the
DDML incorporated and found students completed, on av-
erage, 79% of all six levels in the tutor assignment. Student
retention rate was 55%. This was an improvement over the
non-DDML version of Deep Thought (61% tutor completion
on average, and 31% retention rate).

We later incorporated a data-driven proficiency profiler (the
DDPP) to replace the expert-determined priorities[10][8].
The DDPP is a system that calculates student proficiency
at the end of each level in Deep Thought based on how
a given student performs in comparison to exemplars who
employed similar problem solving strategies, with rule scores
weighted as determined through principal component anal-
ysis (PCA). Based on how similar exemplary students were
assigned in subsequent levels, the DDPP can determine the
best proficiency level for a new student. In contrast to the
DDML system previously employed, this proficiency calcu-
lation and rule weighting is entirely data-driven, with no
expert involvement.

We determined similar problem solving strategies among the
exemplars by clustering the exemplars’ rule scores based on

hierarchical clustering. Expert weighting was replaced by
PCA of the frequency of the rules used for each exemplar
for each level, accounting for 95% variance of the results.
For each rule, its PCA coefficient is the new weight for that
rule score. When a new student uses the tutor, the student’s
rule scores are calculated throughout the level. At the end
of each level, the DDPP examines each student’s individual
rule score and assigns it to a cluster for that rule. The DDPP
then finds which clusters the scores for the most important
rules fall into for that level (based on the same PCA based
weighting), and then classifies that student into a type based
on the set of clusters the student matches. Finally the sys-
tem assigns the student to a proficiency track based on data
from the matching type of exemplars, and how those exem-
plars were placed in the next level. The more exemplars
we have of a given type, the stronger the prediction we can
make for a new student. In the event that a new student
doesn’t match an existing type in the exemplar data, the
student’s proficiency is calculated using the average scores,
as in the original DDML system.

Providing hints to students in the course of an intelligent
tutor as a possible form of step-based feedback has the po-
tential to increase learning gains. Razzaq, Leena, and Hef-
fernan [12] found that learning gains increased for students
given on-demand hints in comparison to students who were
provided hints proactively. In Deep Thought, the hint sys-
tem used is called Hint Factory. Hint Factory is an auto-
matic data-driven hint generator that converts an interac-
tion network graph of student trace behavior into a Markov
decision process (MDP) to automatically select on-demand
hints for students upon request, based on their individual
performance on specific problems. The MDP is data-driven,
using actions logs from previous Deep Thought use in the
classroom to assign weight to proof-state actions based on
whether or not that action ultimately led to successful com-
pletion of the proof. These hints help students solve prob-
lems by suggesting what step should be taken next on a
multi-step problem. Hint Factory has been implemented
in the Deep Thought logic tutor to automatically deliver
context-specific hints to students during problem-solving [4].
In a previous study Hint Factory was shown to provide
context-specific hints over 80% of the time [3]. In a pilot
study, Barnes & Stamper found that Hint Factory can pro-
vide sufficient, correct, and appropriate hints for the Deep
Thought Logic tutor and help students to solve more logic
proof problems in the same span of time [4]. However, we
currently cannot determine the effect hints would have in
addition to the DDML or DDPP; so far, students using ei-
ther of those versions of Deep Thought did not use hints
often enough for any meaningful analysis.

Adding worked examples as a supplement to traditional prob-
lem solving can also be beneficial [2, 13]. Hilbert and Renkl
[5] found that improved learning outcomes occurred when
providing worked examples with a prompt, and proposed
that this was due to allowing the students to have a greater
cognitive load at once. McLaren and Isotani [7] compared
three tutors using all worked examples, all traditional un-
guided problem solving, and a mix of worked examples and
problem solving. Each group achieved similar learning gains,
but the students who were given all worked examples re-
quired less time to achieve those gains. We added worked
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examples to the version of Deep Thought with the DDML
incorporated[11]. Worked examples were generated based on
previous best student solutions, and procedurally annotated.
They were presented to students randomly on a per-problem
basis, based on the number of problems they had solved in
that level already. We found that student retention overall
was 90%, and students completed 94% of the tutor on av-
erage. This percentage was significantly higher than that of
the DDML alone.

3. METHODS

Deep Thought was used as a mandatory homework assign-
ment by students in an undergraduate “discrete mathemat-
ics for computer scientists” course in Fall 2015 and Spring
2016. Students in the two semesters were taught by differ-
ent instructors. Students were assigned Levels 1-6 of Deep
Thought for full credit, with partial credit awarded propor-
tional to the number of levels completed. For this study, we
compare the data from three Deep Thought test conditions
used across the two semesters to differentiate the effect of
our data-driven methods on student performance.

The first group evaluated for this study were assigned only
problem-solving opportunities (PS group, n = 26). The
problem assignment system used was the DDML system de-
scribed in the previous section, where students were assessed
between levels and placed on either a high or low proficiency
track in the next level. This group of students were taken
only from the Fall 2015 semester, as there existed no equiv-
alent test condition in Spring 2016.

The second group of students were randomly assigned either
problem-solving opportunities or worked examples of the
same problems within each level (PS/WE group, n = 179),
with the number of problem-solving opportunities controlled
to match the number of problems solved by the PS group.
Like the PS group, the PS/WE group were assigned profi-
ciency tracks using the DDML. However, because individual
rule application scores were updated at each step in worked
examples as if a student had applied that rule in while prob-
lem solving, most students were consistently assigned to the
high track in most levels, and were only assigned the low
track when their individual performance was below satisfac-
tory. This group of students were taken from both the Fall
2015 and Spring 2016 semesters.

The third group of students were randomly assigned problem-
solving opportunities or worked examples in the same man-
ner as the PS/WE group, but with the DDPP method as-
signing proficiency tracks instead of the DDML, where stu-
dents were assigned the same proficiency track as prior stu-
dents who most closely matched their rule application be-
havior (DDPP group, n = 61). This group of students
were also taken from both the Fall 2015 and Spring 2016
semesters. Students in all three groups had access to on-
demand hints.

All students were evaluated using two proof problem ques-
tions as part of a mid-term examination, which was used
as a post-test for this study. Students performance in the
post-test for both Fall 2015 and Spring 2016 were graded by
the same teaching assistant, ensuring consistent evaluation
across all results. Students were separated for evaluation

by performance on the post-test and by the predominant
track level in Deep Thought. The post-test was a set of
two proofs students had to solve on paper for a midterm
exam. These questions were hand-graded with partial credit
given based on the percentage of the proofs completed and
points taken off for misapplication of rules and skipping non-
trivial rules. We considered two performance levels: post-
test scores greater than or equal to 80% (AB), or less than
80% (CDF). The post-test scores mark the final evaluation
of students’ ability to solve proof problems, and occurs im-
mediately following the Deep Thought tutor homework as-
signment.

The second dimension we studied was the proportion of high
to low proficiency track levels the students completed. Stu-
dents who were assigned to the high proficiency track in a
level had the ability to finish on either the high or low profi-
ciency track depending on the number of problems skipped
within that level. Students who completed more levels on
the high track than the low track were marked as high track
students, and students who completed more levels on the low
track than the high track were marked as low track students.
The track assignments indicate the number and complexity
of problems students received, with the low track having
more problems of lower complexity, and the high track hav-
ing fewer problems of higher complexity. The tracks were
designed so that students would have a similar number of
rule applications across the tracks, even though the number
of problems differs. Typically, the low track has three prob-
lems with expert solutions using 5 rule applications, and the
high track has 2 problems with expert solutions using 7 —
8 rule applications - meaning that both tracks minimally
required about 15 total rule applications (though students
typically used more).

In addition to post-test and predominant track level, we ex-
amined total time in tutor, average time spent per problem,
percentage of correct rule applications out of all rule appli-
cations, and the total number of rule applications. We also
looked at ancillary behaviors (hint usage, skipped problems,
and reference requests) that could differentiate high and low
performing students. We compared these metrics to better
understand the impact of worked examples, hints, and data-
driven track selection on student performance. The results
of this descriptive analysis are presented in the next section.

4. RESULTS

Table 1 displays the percentage of AB students in each of the
PS, PS/WE, and DDPP groups for all students, as well as
students who completed the majority of the tutor in either
the high or low tracks. Table 1 also displays the percentage
of students in each group and each track who dropped out of
the tutor before full completion, as this is one of the metrics
we have used to judge the effectiveness of our data-driven
methods. In our previous work using the same version of
Deep Thought, we found that students completed 94% of
the tutor on average, with a retention rate of 90%. The
average percent tutor completion for the groups in this study
were consistent with these numbers (PS: 95%, PS/WE: 93%,
DDPP: 94%).

The first interesting result of note is that the percentage of
students who performed better on the post-test was higher
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Table 1: Percentage of AB Students and Percentage
of dropped students in the PS, PS/WE, and DDPP
groups.

Condition ALL High Track Low Track
n % AB Students
PS | 26 | 65.38 71.43 63.16
PS/WE | 179 | 49.72 52.35 36.67
DDPP | 61 | 63.93 66.67 61.76
n % Dropped Students
PS | 26 3.85 0.00 5.26
PS/WE | 179 | 11.73 6.71 36.67
DDPP 61 9.84 11.11 8.82

for for the PS (65%) and DDPP (64%) groups than for the
PS/WE group (50%), across all the students, as well as
within the high and low track groups. In the PS group,
students who completed more levels on the high track dis-
played a higher overall proficiency of the subject matter than
those who finished more often on the low track (71% vs 63%,
respectively), as did students in the PS/WE group (52% vs
37%).

However, students in the DDPP group showed a consis-
tent level of proficiency regardless of the tracks completed
(66% vs 61%), which makes sense considering that these
students were matched to previous successful students who
displayed similar rule-application behavior, and had a more
even placement within the high and low tracks compared
to the PS group, who had even placement among tracks,
but within the context of their own performance compared
to expert-decided thresholds. The DDPP group also had
higher placement compared to the PS/WE group, who were
placed on the high track much more often than not due to
the inclusion of worked examples. A Kruskal-Wallis test for
one-way analysis of variance showed no significant difference
between groups (p = 0.22).

Students also had a higher retention rate in both the PS
(4%) and DDPP (10%) groups compared to the PS/WE
group (12%). It is especially interesting to see the drop rate
among low track students in the PS/WE group, who had
a much lower retention rate among all the students in the
study. Because students in the PS/WE group were more
often that not placed in the high track in each level, for
students to end up on the low track indicates a high level of
problem-skipping among these students. We can conclude
that low performing students who are not intelligently as-
signed problems based on their problem-solving performance
appear to gain little from worked examples.

While it may be tempting to declare problem-solving op-
portunities with no worked examples as the best performing
pedagogical choice among the three groups based on these
numbers alone, a look into additional performance metrics
gives some more insight. Table 2 presents the amount of
time spent in tutor and on each problem, as well as the per-
centage of correct and total rule applications for each group,
separated by track. The numbers presented are the median
values for each metric, since the distributions of scores were
highly skewed and non-normal, and none of the differences
were significant due to low sample size within each subgroup.
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As shown in Table 2, among AB students in all three groups,
the total time spent in tutor appears similar, although the
mean time for high-track students was lower for DDPP (M
= 3.95hr, SD = 6.21hr) compared to PS/WE (M = 4.46hr,
SD = 9.13hr) and PS (M = 6.66hr, SD = 9.91hr). The
mean time for low-track students was lower for PS (M =
4.63hr, SD = 9.55hr) and DDPP (M = 5.48hr, SD =
5.42hr) than the PS/WE (M = 7.74, SD = 9.76). The
means of average problem time, percentage of correct rule
applications, and number of rule applications were consis-
tent with the median values presented in Table 2 across all
three groups. Note that low-track students in the PS/WE
groups had the lowest percentage of correct rule applica-
tions, and the highest number of total rule applications among
all the groups. This means they are doing more work, but a
lower percentage of it is correct.

As shown in Table 2, among CDF students in all three
groups, the total time spent in tutor is dramatically dif-
ferent, with PS spending 3 to 4 times as long in the tutor
than PS/WE and DDPP groups. This ratio is also similar
in the average problem time for high and low track stu-
dents, and the number of total rule applications for high
track students. Therefore, while problem-solving only (PS)
may have a slightly higher overall success rate in helping
students learn proof problem solving and remain in the tu-
tor than the DDPP students, for students who are less pre-
pared, PS results in a much higher time spent in the tu-
tor, with little return on the time investment. Therefore,
for students who have a better grasp of the subject matter,
pure problem-solving may offer a slightly better option for
getting through the assigned tutor, although the differences
between problem solving, problem solving and worked exam-
ples, and proficiency profiled assigned problem solving and
worked examples are minimal. However, for less prepared
students, pure problem-solving opportunities offer little to
guide students to higher understanding of the material, and
in general, the DDPP offers a much better path to complet-
ing the tutor in far less time for both AB and CDF students,
giving students the opportunity to encounter all the subject
matter and have a greater chance of learning the material,
resulting in higher overall post-test scores.

Completing the tutor assignment is important for students;
however, since we want to make sure that students are learn-
ing the material well, mid-term examination scores are ulti-
mately a higher gauge for learning success. Among all the
experimental groups in this study, at most 65% of students
were performing at A or B grade level on the mid-term ex-
amination. We would like to increase this percentage of AB
students, so the question at this point is: Is it possible for us
to predict low exam scores based on in-tutor data for early
intervention?

We first look at the differences between AB and CDF stu-
dents in Table 2, with the assumption that the DDPP method
offers the best overall chance of success for students. For
high track students, total tutor time, average problem time,
percentage of correct rule applications, and total rule ap-
plications are consistent between AB and CDF students.
However, for low track students, average problem time, per-
centage of correct rule applications, and total rule applica-
tions show a higher difference. CDF students spent twice as
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Table 2: Total Time, Average Problem Time, Percentage of Correct Rule Applications, and Total Rule
Applications for AB and CDF students in the PS, PS/WE, and DDPP groups, separated by High and Low
Track. The numbers listed are all median value

S.
AB STUDENTS CDF STUDENTS
PS | PS/WE | DDPP PS | PS/WE | DDPP

HIGH TRACK n 5 78 18 n 2 71 9
Total Tutor Time (hr) 2.47 2.37 2.80 12.8 3.75 3.17
Average Problem Time (min) 9.89 11.1 12.1 52.3 18.4 16.0
% Correct Rule Applications 60.8 63.5 58.5 64.1 56.9 62.3
Total Rule Applications 258 214 203 471 255 204

LOW TRACK n| 12 11 21 n 7 19 18
Total Tutor Time (hr) 1.80 3.33 3.67 17.2 5.96 4.98
Average Problem Time (min) 6.76 15.2 15.0 60.1 25.0 30.4
% Correct Rule Applications 68.8 45.5 57.0 48.7 45.7 47.0
Total Rule Applications 201 404 291 382 394 389

long on average per problem than AB students, and applied
rules correctly less than half of the time, while AB students
applied rules more than half of the time. CDF students
also attempted applying rules 25% more overall than AB
students.

Since the performance differences between AB and CDF stu-
dents are not as apparent for high track students, we look
at ancillary tutor behavior to make a better distinction. Ta-
ble 3 shows the number of requested hints, the number of
skipped problems, and the number of rule reference requests
(descriptions of logic rule operations) made by students in
all groups. For the DDPP group, the most apparent dif-
ference among AB and CDF students are the number of
hints requested, with the CDF group requesting 32 hints
(M =50, SD = 57) compared to 17 (M = 32, SD = 42) for
the AB group. This difference in hints requested between
AB and CDF students is also consistent across all groups
and both high and low track students. We conclude that
for high track students, we can differentiate between higher
and lower proficiency students using hint request behavior,
and for low track students, we can differentiate higher and
lower proficiency students using the amount of time spent
on average per problem and the percentage of correct rule
applications. This allows the possibility of making an inter-
vention during a student’s progress through Deep Thought
in the case that a student requires additional feedback or
aid from an instructor due to a lesser understanding of the
subject matter.

Table 3: Number of Hints, number of Skips, and
number of Rule Reference requests for AB and CDF
students in the PS, PS/WE, and DDPP groups, sep-
arated by High and Low Track. The numbers listed
are all median values.

PS/WE DDPP

HIGH | AB [ CDF | AB | CDF | AB | CDF
# Hint | 95 166 | 12 26 | 17 32
#Skip | 5 16 | 1 1 0 2
#Ref | 151 168 | 76 145 | 111 92

LOW | AB [ CDF | AB | CDF | AB | CDF
#Hint | 30 104 | 31 44 | 19 26
#Skip | 1 0 |3 24 | 3 15
#Ref | 77 224 | 60 271 | 55 109
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5. CONCLUSION

In this paper we compared two classrooms of students us-
ing different test conditions of Deep Thought, with different
combinations of problem assignment (DDML or DDPP) and
the addition of worked examples, for the purpose of under-
standing how the specific methods of problem assignment
and combination of hints and worked examples affect high
and low performing students, as evaluated using mid-term
examination scores. We found that for higher proficiency
students who have a firmer grasp of the subject matter,
problem-solving opportunities offer the best chance of com-
pleting the tutor in a timely manner; however, the addition
of worked examples does not significantly detract from these
students’ learning experience. The method of problem as-
signment (DDML or DDPP) does not have a noteworthy
effect on high student performance.

For lower proficiency students, we found that problem-solving
opportunities alone with DDML problem assignment offered
little to guide students to higher understanding of the ma-
terial, and greatly extended the amount of time students
spent in the tutor with little learning benefit. The addi-
tion of worked examples helped these students get through
the tutor faster, however these students had a lower reten-
tion rate than any other students and lower examination
scores. We conclude from these results that updating our
data-driven skill estimates equally for viewing or applying
rules resulted in students being assigned to the high-track
when they were not prepared to solve harder problems. With
proficiency profiling — matching students to previously suc-
cessful students and the paths they take through the tutor —
we can reduce the amount of time spent in tutor, increase re-
tention, and make better use of worked examples by giving
them alongside problems that better match an individual
student’s proficiency level. This results in similar perfor-
mance to problem solving alone in terms of retention and
knowledge gained, but with a lot less time spent in the tu-
tor for lower-proficiency students. We conclude that our
DDPP method offers the best overall possibility of success
for students completing the Deep Thought tutor in a timely
manner, learning the subject matter, and performing well
on post-tutor examinations.
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