Guiding Students towards Frequent High-Utility Paths in an Ill-Defined Domain

Igor Jugo, Božidar Kovačić, Vanja Slavuj
Department of Informatics, University of Rijeka, Croatia

PHASE 1 – CLUSTERING BASED ON ACTIVITY AND EFFICIENCY

In this phase, groups of students are discovered based on their interactions and learning efficiency. The clusters in the best model are then automatically graded based on the quality of their learning process. Student model is expanded by cluster affiliation.

PHASE 2 – HIGH-UTILITY SPM

In this phase, high-utility sequential patterns are discovered from the dataset of student interactions. They provide a basis for hint selection. This process is performed for each cluster. Dataset preparation consists of the following steps: for each student in the cluster, evaluate all paths (utility/profit), transform paths into two sets (leading to/from each unit in knowledge domain), add to cluster dataset, perform HUSPM, store patterns ordered by profit.

PHASE 3 – PRESENTING HINTS

In this phase, the new tutoring model performs hint selection based on the students’ current cluster affiliation, currently selected unit and previously presented hints. Prefix hints are presented at the start of the learning activity (for the selected unit), while suffix hints are presented immediately after the learning activity is completed.

EXPERIMENT

Two knowledge domains: D1 (“Web technologies”) = 31 units, D2 (“Design patterns”) = 36 units. Control and test group: n = 35 3rd year undergraduate students (in each group). Duration: D1 = 4 days, D2 = 7 days. Phase 1 and 2 performed on a growing dataset (every 400 new interactions): D1 = 9, D2 = 13 runs.

RESULTS

Test group results show improved learning process efficiency - lower number of interactions and less time required to complete the domain (D1 ~ 15%, D2 ~ 5%). Progress visualisation for D1 below: Control group = 12, Test group = 17 students in fastest group.

FUTURE WORK

a) Improvement of clustering interpretation algorithm (exclude inactive students before clustering, add them to a lowest graded cluster, add outlier detection),
b) Improvement of hint selection algorithm (first select paths regarding selected unit from both current and one grade higher cluster, then order by „profit”, and finally choose unit to present.

ACKNOWLEDGEMENTS

This research is a part of the Project "Enhancing the efficiency of an e-learning system based on data mining", code: 13.13.1.2.02., funded by the University of Rijeka, Croatia.