Generalising IRT to Discriminate Between Examinees

Ahcène Boubekki
ULB Darmstadt/TU
Darmstadt/DIPF
boubekki@dipf.de

Ulf Brefeld
TU Darmstadt/DIPF
brefeld@cs.tu-darmstadt.de

Thomas Delacroix
Telecom Bretagne
thomas.delacroix@telecom-bretagne.eu

ABSTRACT
We present a generalisation of the IRT framework that allows to discriminate between examinees. Our model therefore introduces examinee parameters that can be optimised with Expectation Maximisation-like algorithms. We provide empirical results on PISA data showing that our approach leads to a more appropriate grouping of PISA countries than by test scores and socio-economic indicators.

1. INTRODUCTION
Developments in Psychometrics have led to a multitude of logistic models, ranging from simple classical test theory to sophisticated multidimensional generalizations (e.g., [2]). Usually, these generalizations focus on items and the success of solving an item depends on a particular set of skills. On the contrary, examinees are only represented by their ability although, according to the original theoretical IRT, ability and the item difficulty, respectively. These parameters can be related to the score x_i and the rate of success of the question a_j by using the transformations $\beta_j = \log \left(\frac{1-a_j}{a_j} \right)$ and $\theta_i = \log \left(\frac{1-x_i}{x_i} \right)$. Note that x_i and a_j are real numbers bounded by 0 and 1. After substitution, the model can be expressed as

$$IRF_{1PL}(i,j) = \frac{a_j x_i}{a_j x_i + (1-a_j)(1-x_i)}.$$ \hspace{1cm} (2)

A similar transformation can be applied to the 2PL [1], where $a_j = b_j$ are non negative real numbers called item discrimination.

$$IRF_{2PL}(i,j) = \frac{1}{1 + e^{\theta_i (\alpha_j + \beta_j)}} = \frac{(a_j x_i)^{b_j}}{(1-a_j)(1-x_i)^{b_j}}.$$ \hspace{1cm} (3)

The multidimensional two-parameter logistic model (M2PL) [2] splits the items in k different skills. The examinee has an ability parameter for each skill that is affected by a skill discrimination parameter. The ability is now a vector of non-negative real numbers $\theta_i = (\theta_{i,1}, ..., \theta_{i,k})$ and the item discrimination a vector of non-negative real numbers $\alpha_j = (\alpha_{j,1}, ..., \alpha_{j,k})$.

$$IRF_{M2PL}(i,j) = \frac{a_j x_i^{b_j}}{a_j x_i^{b_j} + (1-a_j)(1-x_i)^{b_j}}.$$ \hspace{1cm} (4)

The appealing use of item discrimination parameters can be translated to examinees, for instance to distinguish between a regular scholar student and a talented, yet slacking one. Let us introduce an examinee discrimination parameter denoted by the non-negative real number y_i that acts as the analogue of its peer b_j. The discrimination parameters will also be decoupled from the other item or examinee parameter. This assures the identifiability of the model. The resulting model is called the Symmetric Logistic Model (SyLM) and given by

$$IRF_{SyLM}(i,j) = \frac{a_j x_i^{b_j}}{a_j x_i^{b_j} + (1-a_j)y_i (1-x_i)^{b_j}}.$$ \hspace{1cm} (5)

At first sight, the logistic parametrization of the SyLM appears as a special case of the M2PL by setting $\beta_j = 0$ and renaming the parameters, however, the homographic parameterization renders them intrinsically different. Actually, SyLM is closer to the 2PL as it does not subdivide items into skills although a multidimensional extension could be easily derived. For lack of space, we will thus only compare SyLM to the 1PL and 2PL.
Table 1: Synthetic results

<table>
<thead>
<tr>
<th>Model</th>
<th>Param.</th>
<th>log.Lik</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1PL</td>
<td>Log.</td>
<td>-3847.1</td>
<td>8504.3</td>
<td>10100.1</td>
</tr>
<tr>
<td>1PL</td>
<td>Hom.</td>
<td>-3836.6</td>
<td>8483.2</td>
<td>10079.0</td>
</tr>
<tr>
<td>2PL</td>
<td>Log.</td>
<td>-3809.2</td>
<td>8478.5</td>
<td>10172.8</td>
</tr>
<tr>
<td>2PL</td>
<td>Hom.</td>
<td>-3724.3</td>
<td>8308.7</td>
<td>10002.9</td>
</tr>
<tr>
<td>SyLM</td>
<td>Log.</td>
<td>-3809.2</td>
<td>9238.5</td>
<td>12430.1</td>
</tr>
<tr>
<td>SyLM</td>
<td>Hom.</td>
<td>-3455.5</td>
<td>8531.1</td>
<td>11722.6</td>
</tr>
</tbody>
</table>

Table 2: PISA country grouping

<table>
<thead>
<tr>
<th>Country</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCN Shanghai</td>
<td>CHE Switzerland</td>
</tr>
<tr>
<td>SGP Singapore</td>
<td>GER Germany</td>
</tr>
<tr>
<td>FRA France</td>
<td>JPN Japan</td>
</tr>
<tr>
<td>GBR Great Britain</td>
<td>USA USA</td>
</tr>
<tr>
<td></td>
<td>RUS Russia</td>
</tr>
<tr>
<td></td>
<td>ARG Argentina</td>
</tr>
</tbody>
</table>

3. EMPIRICAL EVALUATION

3.1 Synthetic Comparison

For each approach, logistic and homographic parameterizations are tested. Parameters are inferred by a Maximum Likelihood [4] algorithm supported by a Newton-Raphson optimization. The dataset consists of the results to the first Mathematics booklet of PISA 2012 study in France (380 examinees, 25 items). For items having two degrees of success, both cases are considered as a success. Similarly, answers entered as ‘not reached’ or ‘NA’ are considered as failures.

Although the results shown in Table 1 should be independent of the parametrization, estimations using homographic parameterizations produce better results throughout all settings. As expected, the additional parameters brought into the optimization by SyLM are crucial for the information criteria. However, comparing SyLM with the 1PL shows SyLM as the winner in two out of three cases. The decrease of the log-likelihood exceeds the increase of the AIC due to the significantly higher number of parameters. The difference is even stronger for BIC and increases with the number of samples, hence naturally penalizing SyLM.

3.2 PISA Analysis

We now analyse the PISA 2012 ranking [3] and its associated country clustering with SyLM. The original grouping is based on the scores in the different tests and on social and economical variables of the countries. We focus on four pairs of countries/economies and shown in Table 2. Although Shanghai and Singapore are not reported similar, we study them together as they are the top ranked and the only ones without a similar peer. Our analysis is again performed on the Mathematics test. For each country, booklets are analyzed separately before the results are merged.

For the the twelve countries listed in Table 2, Figure 1 focuses on the distribution of examinee’s discrimination given the examinee’s ability. The coloring indicates the ratio of pupils having a high or a low normalized ability. We consider values below .25 as a low normalized characteristic and above .75 as a high one.

Although Switzerland and Japan are in the same PISA group, their figures are very different. The Japanese distribution is closer to the other Asiatic countries while the Swiss is similar to the German one. The geographic argument holds for the Swiss and Japan and their figures are very different. The Japanese distribution is very different. The Swiss distribution is closer to the other Asiatic countries while the Japanese one is similar to the German one. The geographic argument holds for the Swiss and Japan and their figures are very different.

1The 2PL counts \(N + 2M \) parameters. SyLM has \(2N + 2M \).
2Data is normalized by \(y_i \rightarrow \frac{y_i}{1 + y_i} \) and \(\theta_i \rightarrow \frac{1}{1 + e^{-\theta_i}} = x_i \).

4. CONCLUSION

We proposed the Symmetric Logistic Model as a generalization of the Rasch model. Our approach can be interpreted as a symmetric 2PL at the cost of additional parameters. Empirically, our Symmetric Logistic Model showed that the PISA grouping of countries based on score and socio-economic backgrounds is suboptimal. More appropriate groups could be formed by taking examinee discrimination parameters into account.

5. REFERENCES