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ABSTRACT
Deep Thought is a logic tutor where students practice con-
structing deductive logic proofs. Within Deep Thought is
a data-driven mastery learning system (DDML), which cal-
culates student proficiency based on rule scores weighted by
expert-decided weights in order to assign problem sets of
appropriate difficulty. In this study, we designed and tested
a data-driven proficiency profiler (DDPP) method in order
to calculate student proficiency without expert involvement.
The DDPP determines student proficiency by comparing rel-
evant student rule scores to previous students who behaved
similarly in the tutor and successfully completed it. This
method was compared to the original DDML method, pro-
ficiency based on average rule scores, and proficiency based
on minimum rule scores. Our testing has shown that while
the DDPP has the potential to accurately calculate student
proficiency, more data is required to improve it.
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1. INTRODUCTION
Data-driven methods, methods where each step and calcula-
tion is based on analyzing a set of historical data, have been
used to great effect to improve individualized computer in-
struction. They have been used in intelligent tutoring sys-
tems to accurately predict student behavior and improve
learning outcomes. In contrast to individualized tutoring
systems based on developing complex and context specific
models of behavior, data-driven systems reduce the need for
expert involvement to design the system, and can poten-
tially adapt to new users without refinement of a behavioral
model. This is because data-driven systems analyze previ-
ous student data in order to model student behavior and
determine the best course of outcome in the tutor. There-
fore, developing a data-driven intelligent tutoring system is
based on gathering data, and developing the methods the
system uses to analyze and react to student behavior.

Figure 1: The Deep Thought DT3 logic tutor. Stu-
dents apply logic rules (axioms) to premises to de-
rive new statements until the conclusion (at the bot-
tom) is justified. The right window displays the
proof in standard list format.

We have been incrementally augmenting the Deep Thought
logic tutor (Fig. 1) with data-driven methods for formative
feedback and problem selection to improve student learning
and reduce tutor dropout. Our long term goal is to create
an intelligent tutor for logic proof construction that is fully
data-driven and can adapt to students learning logic with
varying curricular requirements without the need for fur-
ther expert input. To this end, the next step in our work is
to replace the expert-authored assessment parameters built
into our problem selection system with a data-driven pro-
ficiency calculation that approximates the original system’s
performance.

Deep Thought utilizes a data-driven mastery learning sys-
tem (DDML) consisting of 6 strictly ordered levels of proof
problems. Each level is split into a higher proficiency track
with a lower number of complex problems, and a lower pro-
ficiency track with a greater number of simpler problems.
The first level of problems are the same for all students, and
are used to estimate their initial proficiency. Proficiency is
calculated using the knowledge tracing of all rule-application
actions taken in the tutor. These action scores are compared
to the average score thresholds of corresponding problems
solved by past exemplars – students who have successfully
completed the entire tutor, and have therefore demonstrated
sufficient proficiency in the subject matter (Fig. 2).
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Figure 2: The DDML’s threshold builder. Knowl-
edge components (KCs) for each exemplar are up-
dated using action steps from an interval set of tutor
problems. The KC score averages at each interval
are used as thresholds in the DDML system.

The difference between each action score minus its threshold
is weighted by the expert-decided priorities of those actions
within the level (Eq. 1). The sign of the resulting score
determines placement in either the higher (+) or lower (−)
proficiency track. On each subsequent level the system will
first estimate a student’s proficiency and then assign them to
the higher or lower proficiency track based upon their prior
performance. This system was shown to increase student
completion and reduce tutor dropout over unordered and
hint-based versions of Deep Thought [10].

Level l End Proficiency =

sign

 rulen∑
i=rule0

(scoreSignl,i × rulePriorityl,i)

 (1)

Since the current DDML system uses expert-decided pri-
orities for each of the rule application actions when calcu-
lating a student’s proficiency, any new problems or levels
added to the system will require expert involvement to de-
termine which rules were prioritized in each new or altered
level. This paper describes a study to develop a data-driven
method of determining student proficiency that can replace
the current expert-decided rule priorities in Deep Thought.
This Data-driven Proficiency Profiler (DDPP) uses the clus-
tering of exemplar scores at each level interval for each rule,
weighted by primary component importance, to classify ex-
emplars into types of student progress through the tutor.
New students using the tutor will be assigned to a profi-
ciency track based on comparison to existing types.

The DDPP method is compared alongside proficiency cal-
culations using the minimum rule scores and average rule
scores of exemplars, also weighted by primary component
importance, to see how these methods compare to each other
and to the expert authored system. We hypothesize that the
DDPP will perform more accurately than the minimum or
average methods of student proficiency classification. This
would allow Deep Thought to be used in other classrooms
where the pedagogical method and problem-solving ability
of the class may be disparate from the current exemplar data

from Deep Thought.

Our results show that proficiency calculation using average
rule scores performs more accurately than proficiency calcu-
lated based on minimum rule scores. In addition, the DDPP
method performs more accurately than the average method
in some parts of the tutor, while it is less accurate in other
parts. Unfortunately, the DDPP system does not yet reach
the accuracy of the original system overall in calculating stu-
dent proficiency. We conclude that more data is required in
order for the DDPP to properly approximate the accuracy
of the original system’s proficiency calculation.

2. RELATED WORK
2.1 Data-driven Tutoring
An early example of a data-driven intelligent tutor is the
Cognitive Algebra Tutor[12]. Here the authors introduce an
algebra tutor which models student behavior based on the
cognitive theory ACT-R and student data gathered from
several previous studies. The Cognitive Algebra Tutor was
several years and studies into development at this time, and
the result is an example of a mostly-realized data-driven tu-
tor. The tutor as it stood improved student performance,
and the authors noted that although it over-predicted stu-
dent performance, it would be improved the more data was
collected. However, this system still took a long time and
a great deal of expert involvement to design and improve.
Conversely, developing a data-driven method of student as-
sessment would reduce this time and effort, since it would
be based on analyzing previous data rather than developing
and improving on a cognitive model.

Later analyses on the potential benefits, and recommenda-
tions, for using data-driven methods to develop intelligent
tutoring systems have focused on improving the modelling
of student behavior rather than using data to improve on
student assessment. Koedinger et al[7] give a very detailed
overview on developing data-driven intelligent tutoring sys-
tems, and techniques for incorporating data in a useful way.
They discuss optimizing the cognitive model using learning
factors analysis; fitting statistical models to individual stu-
dents; modeling student mood and engagement by modeling
off-task behaviors, careless errors, and mood; and improv-
ing how the tutor selects actions for the student via MDP
or POMDP. In a later work[8] the authors compare and
contrast current data-driven methods for intelligent tutor-
ing and discuss the potential for these methods to improve
MOOCs. They go over the success cases for using data to
improve tutors and coursework, in particular cognitive task
analysis.

There have been several recent studies that demonstrate the
potential for data driven methods to result in tutors that
more accurately assess student performance and react to stu-
dent behavior. Lee and Brunskill[9] examined the benefits
and drawbacks to basing model parameters on existing data
from individual students in comparison to data from an en-
tire population, specifically as it pertained to the number of
practice opportunities a student would require (estimated)
to master a skill. The authors estimated that using indi-
vidualized parameters would reduce the number of practice
opportunities a student would need to master a skill. Gon-
zalez et al.[4] demonstrated a data-driven model which au-



tomatically generated a cognitive and learning model based
on previous student data in order to discover what skills
students learn at any given time, and when they use skills
they have learned. The resulting model predicted student
behavior without the aid of previous domain knowledge and
performed comparably to a published model.

Data-driven intelligent tutors not only have the potential
to more accurately predict student behavior, but interpret
why it occurs. For instance, Elmadani et al. [2] proposed
using data-driven techniques to detect student errors that
occur due to genuine misunderstanding of the concepts (mis-
conception detection). They processed their data using FP-
Growth in order to build a set of frequent itemsets which rep-
resented the possible misconceptions students could make.
The authors were able to detect several misconceptions based
on the resulting itemsets of student actions. Fancsali[3] used
data-driven methods to detect behaviors that usually de-
tract from a student’s experience with an ITS (off-task be-
havior, gaming the system, etc).

2.2 Cluster-based Classification
Cluster-based classification has several advantages when ap-
plied to data-driven tutoring. New educational technolo-
gies may reveal unexpected learning behaviors, which may
not yet be incorporated in expert-decided classification pro-
cesses. For example, Kizilec et al. [5] clustered MOOC
learners into different engagement trajectories, and revealed
several trajectories that are not acknowledged by MOOC
designers. In addition, experts classify using their percep-
tion of the average students’ performance[11] [13]. This per-
ception may be different from the actual participant group.
Cluster-based classification methods, however, are able to
classify and update classifications based on actual student
behaviors.

Moreover, previous studies have shown that personalized tu-
toring based on cluster-based classification not only helps
learning, but improves users’ experience. Klasnja-Milicevic
et al. [6] gave students different recommendations on learn-
ing content based on their classified learning styles. As a
result students who used hybrid recommendation features
completed more learning sessions successfully, and perceived
the tutor as more convenient. Despotovic-Zrakic et al. [1]
adapted different course-levels, learning materials, and con-
tent in Moodle, an e-learning platform, for students in dif-
ferent clusters. Results showed that students with adapted
course design had better learning gain, and a more positive
attitude towards the course.

However, the majority of previous work clustered students
solely on their overall performance statistics. In contrast,
our method clusters students based on their application of
specific knowledge components throughout the tutor.

3. METHODS
The Data-driven Proficiency Profiler (DDPP) is a system
which calculates student proficiency at the end of each level
in Deep Thought based on how a given student performs
in comparison to exemplars who employed similar problem
solving strategies (see Fig. 3), with rule scores weighted as
determined through principal component analysis. Based
on how similar exemplars were assigned in subsequent lev-

els, the DDPP can determine the best proficiency level for
a new student. In contrast to the DDML system previously
employed, this proficiency calculation and rule weighting is
entirely data-driven, with no expert involvement. We hy-
pothesize that the DDPP based calculation will perform
more accurately when compared to average and minimum
methods.

3.1 Data-driven Problem Profiler
We first determined similar problem solving strategies among
the exemplars by clustering the exemplars’ rule scores (KCs)
based on hierarchical clustering. For the initial single-point
distance measure we used Euclidean squared distance, while
for the hierarchical clustering algorithm we used cluster cen-
troids to determine the distance between individual clusters.
As a result each exemplar is assigned to a set of n clusters
(where n is equal to the number of KCs), as shown in the
table in Fig. 3.

Expert weighting was replaced by principal component anal-
ysis (PCA) of the frequency of the rules used for each exem-
plar for each level, accounting for 95% variance of the results.
PCA is typically used to reduce the dimensionality of a data
set by determining the most influential factors in the data
set. The influence of a given factor is based on how much
that factor contributes to the variability in the data. We use
PCA analysis on the Deep Thought data set to determine
which rules were most important to success in the tutor at
each level. Rules which account for 25% of importance and
higher are considered most important for completing a level.
This percentage was determined through testing, and is the
percentage that maximized accuracy. For each rule, its PCA
importance value is the new weight for that rule score. Un-
like expert authored weights, these rule score weights are
based on each rule’s importance as determined by the data.

When a new student uses the tutor, the student’s rule scores
are calculated throughout the level. At the end of each level,
the DDPP looks at each student’s individual rule score and
assigns it to a cluster for that rule. The DDPP then finds
which clusters the scores for the most important rules fall
into for that level (based on the same PCA based weighting),
and then classifies that student into a type based on the set
of clusters the student matches (see Fig. 3, right). Finally
the system assigns the student to a proficiency track based
on data from the matching type of exemplars, and how those
exemplars were placed in the next level. The more exemplars
we have of a given type, the stronger the prediction we can
make for a new student. In the event that a new student
doesn’t match an existing type in the exemplar data, their
proficiency is calculated using the average scores. Average
scores are used as a default because, as shown in the results,
for most levels it is a better prediction approximation than
using the minimum scores.

3.2 DDPP Advantages
In the original system, the student proficiency was deter-
mined based on one set of rule thresholds and a set of ex-
pert authored weights. However as a result, the system
didn’t take varying student problem-solving strategies into
account. The data is based on students who completed the
tutor, who have therefore shown the level of mastery re-
quired to successfully complete Deep Thought. However the
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Figure 3: The Data-Driven Proficiency Profiler. (Left) At each level interval, exemplar KC scores are
clustered, and exemplars are assigned a cluster for each KC Score. (Center) KCs that make up 25% of
importance in the current level are used to assign exemplars to types. (Right) New student scores are
assigned to clusters, and compared to existing types to determine next level path.

scores are averaged over all the students at the end of each
level. By taking the average of these student scores at this
point, we’re still assuming only one successful problem solv-
ing strategy for completing each level in the tutor. However
while most strategies might be the same for earlier levels,
there may be a variety of strategies in later levels that can
still result in successful completion.

The DDPP method accounts for that possible variety in
problem solving methods. In using an unsupervised cluster-
ing method, we’re able to account for different clusters while
not knowing how many clusters there are for each rule. By
clustering the scores, we’re essentially looking for different
strategies that utilize particular rules and determining these
strategies based on the student data. Once we determine
which strategy a new student is utilizing, we can look to the
data again to see how exemplars who employed a similar
strategy were placed in the tutor and how they performed,
thus determining the best way for the tutor to react to that
particular student. Using PCA based weights allows us to
weight rule scores based on rule importance as determined
by previous students who completed the tutor, rather than
expert determination.

3.3 Evaluation
Testing was performed on data collected from two courses
using Deep Thought with the DDML system. The first was
a Philosophy deductive logic course (n = 47) using Deep
Thought as a regular assignment over the course of a 15-
week semester. The second was a Computer Science dis-
crete mathematics course (n = 84), using Deep Thought
as a two week assignment during the course’s 4-week logic
curriculum. From the students in these data, 26 of the Phi-
losophy students (55%) and 50 of the Computer Science stu-
dents (60%) completed the tutor, and were used as exem-
plars for the compared methods. By completing all levels in
Deep Thought, these students have demonstrated sufficient
mastery of the skills needed for introductory proof problem-
solving.

By using data from both Computer Science and Philosophy
based teaching methods for propositional logic, we expand

the range of problem solving strategies analyzed and exem-
plar types determined. This allows us to test the tutor’s
performance across different classroom conditions, and de-
termine whether the methods for proficiency path placement
are effective for students in different disciplines that use dif-
ferent teaching methods.

The DDML system used the average of exemplar rule scores,
weighted by expert-authored end of level rule priorities, to
calculate student proficiency. In total there were 19 in-
dividual rule actions in Deep Thought on which students
were evaluated. Based on the results of this calculation,
the DDML system determines whether to send a student on
the higher or lower proficiency path in the next level. The
system also allowed for the possibility of students switch-
ing proficiency paths in situations where the student cannot
complete the level on the path they were originally assigned.
Because students can switch paths in the middle of a level,
we can determine if they finish the current level on the same
path they were assigned. If the student did not finish the
level on the same proficiency path, it is an indication that
the DDML system may have initially assigned the student
to the wrong proficiency path. Therefore we can calculate
the accuracy of the original system by determining how of-
ten students who completed the entire tutor changed pro-
ficiency paths throughout. Given SsameTrack as the num-
ber of students who finished a level on the same proficiency
track, and Stotal as the total number of students who com-
pleted the level, the path prediction accuracy for each level
(LevelAccuracy) is calculated as follows:

LevelAccuracy =
SsameTrack

Stotal
(2)

The LevelAccuracy for each level is added together to de-
termine the path prediction accuracy. This calculation tells
us, for students who completed the entire tutor, how well
the original system predicted the paths for them to continue
on. This serves as a basis of comparison between the DDPP
and the original DDML system.



3.3.1 Minimum & Average
The average rule scores are the set of average scores for
each rule in each level. Minimum scores are the smallest
scores in the exemplar data set for each rule in each level.
This calculation is based on the assumption that if a stu-
dent scores at least at this minimum for a given rule in that
level, the student should be able to perform as well as an
exemplar throughout the tutor. The difference between the
current DDML system and average score or minimum score
based proficiency calculation is that the DDML weighted
scores with expert-decided rule priorities, while average or
minimum weighted average or minimum scores with PCA-
determined weights. Calculating proficiency based on aver-
age and minimum scores offers insight into how introducing
PCA to students’ performance baseline changes the predic-
tion accuracy.

4. RESULTS
The prediction accuracy of the minimum, average, and DDPP
methods were calculated for the 76 exemplars from the Phi-
losophy and Computer Science data sets. Ten-fold cross val-
idation was used to train and test the methods across the
combined data. We focus on the results of the path pre-
diction accuracy described in section 3.3 as a basis of com-
parison between the original system, the DDPP, proficiency
based on average scores, and proficiency based on base min-
imum scores. These results are in tables 1, 2, and 3.

4.1 Path Prediction Accuracy
Table 1 shows the path prediction accuracy of the DDML
system, the DDPP system, average score assessment, and
minimum score assessment across all the students in the Phi-
losophy and CS courses. The original system accuracy was
very high, ranging from 75% at the end of level 3 to 88.2%
at the end of level 1. The DDPP was somewhat accurate,
ranging from 61.8% path prediction accuracy at the end of
level 4 to 67.1% path prediction accuracy at the end of level
2. While these accuracies are not nearly as high as in the
original system, they are very good considering that, unlike
the original system, path prediction in the DDPP is entirely
data-driven. It should also be noted that the DDPP was
more consistent in its accuracy, only varying by at most 5%
between levels (in comparison to the original DDML system,
which ranged in accuracy by 9.3%).

Table 1: Path prediction accuracy of the original
DDML system, the DDPP system, average score as-
sessment, and minimum score assessment, for both
Philosophy and CS students at the end of each level

Original DDPP Average Minimum
Lvl 1 88.2% 65.8% 65.8% 35.5%
Lvl 2 85.5% 67.1% 73.7% 18.4%
Lvl 3 75.0% 63.2% 60.5% 69.7%
Lvl 4 78.9% 61.8% 64.5% 40.8%
Lvl 5 78.9% 64.5% 59.2% 59.2%

Overall the original system predicted paths more accurately
than the DDPP, average, or minimum methods across all
levels. The minimum method was least accurate across all
levels. In comparison to the average method, the DDPP
was more accurate than the average method at the end of

levels 3 and 5. The DDPP was equally as accurate as the
average method at the end of level 1, and less accurate at the
end of levels 2 and 4. However, some of the lower accuracy
was likely due to the distribution of exemplars across the
two courses. Recall that the CS students made up a higher
proportion of the analyzed exemplars than the Philosophy
students. Analyzing the path prediction accuracy by the
individual course reveals more detail on the path prediction
accuracy.

4.2 Philosophy & CS Accuracy
In the case of the Philosophy students, where proportionally
fewer of the students were selected as exemplars, the DDPP
system was more accurate than the original system on every
set of levels except for the end of level 5 (see Table 2). In
comparison to the average calculation method, the DDPP
was only more accurate at the end of level 3. At the end
of levels 1 and 5, the DDPP was as accurate as the average
method, and at the end of levels 2 and 4 the DDPP was less
accurate.

Table 2: Path prediction accuracy of the original
DDML system, the DDPP system, average score as-
sessment, and minimum score assessment, for Phi-
losophy students

Original DDPP Average Minimum
Lvl 1 76.9% 80.8% 80.8% 23.1%
Lvl 2 65.4% 69.2% 76.9% 19.2%
Lvl 3 50.0% 84.6% 80.8% 38.5%
Lvl 4 65.4% 69.2% 76.9% 30.8%
Lvl 5 53.8% 46.2% 46.2% 26.9%

In the CS course, where proportionally more of the students
were selected as exemplars, not only was the original system
far more accurate than it was for the entire set of students
overall, but the DDPP path accuracy was much worse in
some places. However, in comparison to the average method,
the DDPP method was only less accurate in level 2. In all
other levels the DDPP was either more accurate than the
average method (levels 3 and 5) or equally as accurate (levels
1 and 4).

Table 3: Path prediction accuracy of the original
DDML system, the DDPP system, average score as-
sessment, and minimum score assessment, for Com-
puter Science students

Original DDPP Average Minimum
Lvl 1 94.0% 58.0% 58.0% 42.0%
Lvl 2 96.0% 66.0% 72.0% 18.0%
Lvl 3 88.0% 52.0% 50.0% 86.0%
Lvl 4 86.0% 58.0% 58.0% 46.0%
Lvl 5 92.0% 74.0% 66.0% 76.0%

4.3 Discussion
In the original DDML method, the weight of each rule was
determined by domain experts. Our results show that when
replacing the original weights by weights determined through
principal component analysis in the average score method,
the prediction accuracy increases for all levels in the phi-
losophy class, but decreases for all levels in the computer



science class. This may because the experts were computer
science students and teachers, who prioritized rules with the
performance of computer science students in mind. When
the real participants were philosophy students, Principal
Component Analysis outperformed experts because it prior-
itized rule based on the performance of the real participants.
It’s possible that expert involvement may be constrained by
the expert’s background, whereas a data-driven approach is
more flexible when adapting to the diversity of participants.

When comparing the path prediction accuracy of the original
method to the DDPP, our result shows that the DDPP cal-
culated student proficiency with more accuracy in the case
of the Philosophy students, but less accuracy overall or in
the case of the Computer Science students. It is likely that
these results are a product of the limited, uncontrolled na-
ture of the dataset. Only 76 exemplars were chosen overall,
and of those exemplars a disproportionate number of them
were selected from the computer science course. We no-
ticed in the data that the students in the Computer Science
course had KC weights that were vastly different than the
expert weights. This means the students in the Computer
Science course were showing some unorthodox problem solv-
ing strategies, particularly in the earlier levels. With enough
data and more students with varying strategies, the DDPP
could more accurately assign other students who employ
different proof solving strategies. However for this limited
dataset, it is possible that there were not enough students
employing the same unorthodox strategies that a type could
be determined.

Table 4: The average number of types found per
level during training (exemplars), and the number of
students typed during testing (new students). There
were a total of 76 students in the data set.

Level 1 2 3 4 5
Avg. Types

Found (Train)
14 13 21 17 26

# Types
Matched (Test)

0 4 2 2 10

Table 4 shows the average number of types found in the
training dataset, and the number of students matched to a
type during testing. While there were several types found
in the training step, far fewer students could be matched
to a type in the testing step. This would explain the lower
accuracy in the DDPP system, as well as why it performed
similarly to the average method; it is likely that many of the
students in the test set could not be classified into a type,
which would result in the DDPP using the calculation based
on average scores to determine student proficiency.

That said, the DDPP is still very accurate considering that,
in all aspects of proficiency calculation, it is completely data-
driven. Its accuracy when applied to the students in the
Philosophy class in particular shows the potential for this
system to be useful in different classroom conditions. The
clustering step at each level produced between 14 and 26
possible types of exemplars to compare students to, com-
pared to what would have been 76 individual students in the
original system. This results in a system of proficiency cal-
culation that, given more data, has the potential to calculate

student proficiency just as accurately and more efficiently as
the original.

5. CONCLUSIONS & FUTURE WORK
We have presented a fully data-driven student proficiency
calculator, the Data-driven Proficiency Profiler (DDPP). The
DDPP clusters exemplar student data into types, attempts
to classify new students into one of the exemplar types, and
calculate proficiency based on exemplars who employed sim-
ilar problem strategies. We hypothesized that the DDPP
would be more accurate than proficiency calculated using av-
erage scores or minimum scores. Instead, our results showed
that the DDPP performed about as well as the average
method overall, and did not approximate the accuracy of
the original system. However our data set was very limited,
and the high accuracy the DDPP achieved for the Philos-
ophy students shows this system has potential once more
data can be acquired.

In the future, we would like to be able to test this system
with more data. The more students use the system, the
greater the data set we will be able to use and the more
conclusions we will be able to draw on the qualities of the
DDPP system. In particular we will analyze in greater de-
tail the types found on each level and the differences between
each type in terms of problem solving strategy. We can also
determine the importance, in depth, of certain rules to each
level and the problems within it based on student problem
solving strategies. Our final step is to implement the DDPP
into Deep Thought and use it to direct students through the
levels. Implementing the DDPP into Deep Thought will al-
low us to test whether, ultimately, the DDPP is an accurate,
data-driven proficiency calculation.
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