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ABSTRACT
Curricula often lack metadata to characterize the relatedness
of concepts. To investigate automatic methods for generat-
ing relatedness metadata for a mathematics curriculum, we
first address the task of identifying which terms in the vocab-
ulary from mathematics word problems are associated with
the curriculum. High chance-adjusted interannotator agree-
ment on manual identification of math terms was achieved
by considering terms in their contexts. These terms rep-
resent 13% of the vocabulary in one seventh grade math-
ematics text. Six classification algorithms were compared
to classify math terms for this text. To avoid overfitting to
this curriculum, we relied on a small number of features that
exploit external knowledge sources.

1. INTRODUCTION
Curricula often lack metadata to characterize the related-
ness of concepts. Our ultimate goal is to develop methods for
automatic generation of knowledge graphs for mathematics
from existing curricula. Towards that end, we develop a rep-
resentation for math word problems that allows us to mea-
sure similarities between problems, based on the math termi-
nology they share [14]. In this paper, we present our meth-
ods to automatically identify the math terms. While math-
ematics is a highly structured domain with many sources
that define terms, we found no single source that captured
the mathematics terms as used in the context of this cur-
riculum. Furthermore, several terms that occur in the word
problems, such as independent, chances, and set, are polyse-
mous, but occur more frequently in a “mathematical” sense.
We therefore annotated the full vocabulary as “math” or
“non-math” based on the predominant usage in the curricu-
lum, and found high agreement among annotators. We then
tested six methods for automatic classification.

The vocabulary items to be classified were represented using
a small number of features based on glossaries, web search,
and corpus statistics. Only 13% of the terms in our vocab-
ulary were labeled as “math.” Such data skew is challenging
for many machine learning methods. To address the class
imbalance, we used ensembles of weak learners and support
vector machines (SVMs), weighting errors on the “math”
class more heavily. We found that SVMs were our best clas-
sifiers. The automated methods presented here can enhance
existing math curricula with domain knowledge graphs of
content similarity among word problems.

2. RELATED WORK
Adaptive learning environments (ALEs) have shown promis-
ing results for mathematics and other STEM subjects [18, 5,
1], even when compared with human tutors [24]. For ALE’s,
the domain model is typically created anew but automated
methods have been applied [3] [25]. The latter build con-
cept maps from handbooks about SCORM standards, based
on hand-constructed patterns to match dependency parses,
then use the concept maps to build ontologies. Our work also
derives semantic knowledge from text, aimed at representing
semantic relations among mathematics word problems.

Automated methods have also been used in construction
of educational domain models for assessments [20], stan-
dards [9], and targeted prerequisites for learners [13]. Vari-
ous approaches have been used to represent domain knowl-
edge, including semantic networks with frames and produc-
tion rules [23], or model-tracing architectures to identify
problem-solving steps students take, including incorrect ones
[2]. Model-tracing, inherently reactive, has been extended
with tutorial actions to pro-actively guide students [12]. Other
approaches to automatically generate metadata require ex-
isting domain ontologies [22]. Our goal is to develop a net-
work of relations among problems that could be used pro-
actively by ALEs or teachers to move students through the
curriculum in a way that promotes optimal learning.

To represent mathematics word problems, we create a bag-
of-words (BOW) vector for math words using methods sim-
ilar to terminology identification [10]. In separate work, we
use this vector to create similarity networks among problems
[14]. A range of methods have been used to identify terms
in product reviews [6], concepts in semi-structured data [4],
technical language in patents [15], or domain-specific termi-
nology in general [21]. Much of this work deals with identi-
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Chap. Sec. Exer. Text
2 1 19 The table shows a proportional relationship between x and y. Complete the table.
9 1 11 Solve the inequality x + 1 < 4. Then graph the solutions.

Figure 1: Sample word problems.

fication of multi-word noun-noun compounds of a technical
nature, and ranking them. In contrast, the secondary school
math terminology has few compounds, includes a mix of dif-
ferent parts of speech, and is non-technical. As in [21, 6, 4],
we rely on relative frequency ratio [8] to distinguish the fre-
quencies of words in our corpus from their frequencies in a
large background corpus. Unlike most of this work, apart
from [15], we developed annotation guidelines and measured
interannotator agreement. We find an agreement of 0.81
among three annotators using Krippendorff’s α (see below),
compared to 0.76 (Fleiss’s κ; a similar metric) in [15].

3. DATA: MATHEMATICS EXERCISES
The data consists of 3000 word problems from a Grade 7
mathematics curriculum. The problems, which can incor-
porate images, tables, and graphs, are instantiated through
templates. Figure 1 shows two problem exercises from chap-
ters 2 and 9, with words that evoke math concepts in bold-
face. Note that a template, x{+|−}X{< | >}Y , randomly
generates instances such as x+ 4 > 9 or x+ 1 < 4. Depend-
ing on the number of instance variables and constraints, a
template may generate a bounded or nearly limitless num-
ber of instances. In addition to the exercise itself, which
may contain a few steps that are typically solved via mul-
tiple choice or fill-in-the-blank, learners are able to select a
more detailed guided solution, or to view the steps to solve
a sample problem instance. We created an XML parser to
extract the text from the exercises, the guided solutions, and
sample problems. The vocabulary analysis is based on the
extracted text.

4. ANNOTATION AND RELIABILITY
At 4,495 words (not lemmatized), the curriculum’s vocabu-
lary is relatively small. Removal of typical stopwords leaves
4,283 words. An additional 103 words, while not typical
stop words, have very high frequency across problems (e.g.,
amount, answer, compare) and are not likely to be useful for
measuring semantic similarity among problems.

The terms we are interested in are those that are characteris-
tic of the concepts the students should know to demonstrate
mastery of the curriculum. The three co-authors, working
independently, each labeled an initial sample of 100 words
as math, non-math and other, based on initial guidelines.
Because pairwise agreement can be high when a chance-
adjusted agreement coefficient is low (the so-called paradox
of kappa [11]), agreement was measured using both pair-
wise agreement and Krippendorff’s Alpha [16], a metric that
factors out chance agreement. Initially, pairwise agreement
was 0.93, but Alpha was 0.54, which is rather low. The low
chance-adjusted agreement was mainly due to inconsistency
among annotators in looking at the contexts in which words
were used, and also due to borderline cases. We wrote more
explicit guidelines with examples (4 pages), then labeled two
additional samples of 100 words each, computing agreement
on each sample before proceeding to the next. On the sec-
ond and third samples, pairwise agreement was 0.92 in both

1. Wolfram Mathworld
2. About.com: mathematics
3. Math domains in Google search results
4. Math domains in Bing search results
5. Digits math glossary
6. Relative frequency ratio

Figure 2: Features to represent vocabulary

cases, and Alpha was 0.83 and 0.81. Given the high agree-
ment and consistency across the second and third samples,
we determined the labeling to be reliable. One of the co-
authors labeled the remainder of the vocabulary, yielding
3832 words labeled as non-math, 571 as math and 92 as
other. Only the words labeled as math and non-math were
used to train the classifier.

5. CLASSIFICATION EXPERIMENTS
This section reports results from a suite of classification al-
gorithms applied to the labeled data. To represent the vo-
cabulary for the learner, we engineered features based on
search and glossary information, and on a corpus-based met-
ric. Two challenges for the classification were infrequency
of the positive class (high data skew), and apparent non-
linearity of the class separation. Of six learning algorithms,
those that had best performance were most suited to these
learning challenges, as described further below.

5.1 Feature Representation
We constructed a feature vector representation for the words
with the 6 features listed in Figure 2. All feature values were
scaled to be in the range of 0 to 1.

For the first two features listed in Figure 2, we used the
functionality of Google Custom Search that permits cus-
tomized searches to user-specified domains. For the first
feature we queried mathworld.wolfram.com, and for the sec-
ond we queried math.about.com. The value for each of these
features consists of the total number of query returns, which
can be arbitrarily large.

Google Custom Search can also be configured so that for the
top ten returns to a query, each return consists of a triple
with the url, a list of text snippets containing the term at
that url, and the page title at that url. For the third feature
listed in Figure 2, we query the web using this functionality,
and calculate the feature value based on the triples for the
top ten returns. Each time math, mathematics, or arithmetic
occurs at least once in each element of a triple, a counter is
incremented. The maximum value is thus 30.

Bing is a Microsoft search engine with an interface through
which queries can be made programmatically. The interface
returns the top 50 search results. Like Google searches, each
result contains the relevant URL, snippets, and title of the
page. As in the Google search feature, for the fourth fea-
ture in Figure 2, a counter was incremented whenever math,
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Table 1: Classification Results
Classifier Precision Recall Fscore Sensitivity Specificity G-Mean
adaboost 0.89 0.90 0.89 0.42 0.97 0.64
bagging 0.90 0.91 0.90 0.41 0.98 0.63
rand-forest 0.90 0.91 0.90 0.45 0.97 0.66
SVM-poly 0.89 0.86 0.87 0.68 0.89 0.78
SVM-RBF 0.89 0.87 0.88 0.68 0.90 0.79
logistic regression 0.89 0.90 0.88 0.31 0.98 0.56

mathematics, or arithmetic occurred at least once in a triple
element. Values are in [0,150].

The mathematics curriculum has an associated glossary of
246 math terms. It includes simple terms, e.g., “sphere,”and
compound terms, e.g., “associative property of multiplica-
tion.” The glossary was expanded with the individual words
in compound terms, excluding stop words. Thus for the
compound term “associative property of multiplication”, the
words associative, property and multiplication were added.
In this way, the glossary was expanded to 516 terms. A
boolean feature value was used here to indicate exact occur-
rence of a word in the glossary.

Relative frequency ratio (RFR) measures relative frequency
of a term in reference to a contrastive background corpus
[6, 8]. The frequency of a word wi in a corpus C, expressed
as FR(wi, C), is its count normalized by size of the corpus.
For a domain specific corpus, e.g., a mathematics text, the
frequency of domain-specific terms should be higher than in
a large, background corpus. The formula for RFR is:

RFR(wi) =
FR(wi, DC)

FR(wi, BC)
(1)

where DC is the domain corpus and BC is the background
corpus. We tested RFR with two background corpora: the
Open American National Corpus (OANC: N=22 ×106) and
English Gigaword, Fifth Edition (N=4,033 ×106). Unsur-
prisingly, we found that the size of the background corpus
is critical to the precision of the RFR measures. When we
ranked Digits words by RFR scores using Gigaword, 306 of
the words labeled as “math” occur in the top 1,000 words
compared with 248 using OANC. Therefore we used Giga-
word as the background corpus.

5.2 Classification
The labeled data was randomly split into a training set with
75% of the vocabulary (3301 terms) and a test set with 25%
of the vocabulary (1101 terms). Using logistic regression,
classification results yielded an overall precision of 0.87 and
a recall of 0.88, compared with 0.78 precision and 0.25 recall
for the math class. The low recall of math terms can be
attributed to high class imbalance, where only 13% of terms
are in the math class. Linear SVM also yielded poor results,
suggesting that the classes cannot be linearly separated. To
address the class imbalance, we use class weights for SVM,
where we use polynomial and RBF kernels to address the
non-linearity. Ensembles of weak learners also help with
non-linearity. For each of three ensemble methods, Boosting,
Bagging and Random Forests, we used 1000 Decision Trees.

Evaluation results are reported using precision, recall, f-
measure, and g-mean [17]. The latter, the geometric mean of

accuracy on the positive class (recall, or sensitivity) and ac-
curacy on the negative class (specificity), is high when both
accuracies are high and their difference is small. It is par-
ticularly useful when there are no criteria for constructing a
cost matrix for errors in sensitivity versus specificity.

For the SVM classifiers, we used C=10,000. For the polyno-
mial kernel, the degree was 4 and the class weights assigned
to the math and non-math classes were 270 and 1350 respec-
tively. For the SVM with the RBF Kernel, class weights were
set to 200 and 1100.

6. RESULTS AND DISCUSSION
Table 1 shows the results for the six classification experi-
ments. All the classifiers had high accuracy, due to the high
class imbalance favoring non-math words. Accuracy on the
math words (sensitivity), however, was relatively low for all
but the SVM learners. The ensemble methods had higher
precision on the math words (≥ 0.78) but low sensitivity
(0.41-0.46). The SVM learners had lower precision (about
0.5) and higher sensitivity (0.68). The logistic regression
had very high precision on the math words (0.81) but very
low sensitivity (0.32). For g-mean, all the classifiers had
values above 0.50, indicating respectable peformance. The
two SVM learners, however, had the highest g-means: 0.78
(polynomial kernel) and 0.79 (RBF kernel).

Manual error analysis of math words that were incorrectly
classified by multiple learners indicated that many of the
errors were due to polysemous words that have one or more
non-math senses that occur with non-neglible frequency. This
includes words like point, dependent, and trial. In WordNet
[19], for example, point used as a noun has twenty-five senses,
and fourteen senses used as a verb. Future work on the
classification task will include investigation of features com-
monly used for coarse-grained word sense disambiguation,
where accuracies of 88% have been achieved using lexical,
syntactic and topical features [7] so that we can apply the
same methods to new curricula.

7. CONCLUSIONS
The vocabulary classification task we address, to identify vo-
cabulary that characterizes the semantics of a curriculum,
differs from standard terminology detection, where the fo-
cus is on highly technical compound terms. It also differs
from word sense disambiguation in that we are interested in
binary classification of senses, based on the use of terms for
a given curriculum. We have shown that human annotators
can achieve very high pairwise and chance-adusted agree-
ment. To avoid overfitting to a given curriculm, the features
we used draw on external knowledge sources such as glos-
saries, web search and large background corpora. With rela-
tively few such features and choice of an appropriate learning
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algorithm, we achieve very high accuracy and good sensitiv-
ity, despite the small proportion of the positive class.
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