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ABSTRACT 

The current paper explores possible solutions to the problem of 

detecting affective states from facial expressions during 

text/diagram comprehension, a context devoid of interactive 

events that can be used to infer affect. These data present an 

interesting challenge for face-based affect detection because likely 

locations of affective facial expressions within videos of students’ 

faces are entirely unknown. In the current study, students engaged 

in a text/diagram comprehension activity after which they self-

reported their levels of confusion, frustration, and engagement. 

Data were chosen from various locations within the videos, and 

texture-based facial features were extracted to build affect 

detectors. Varying amounts of data were used as well to determine 

an appropriate window of data to analyze for each affect detector. 

Detector performance was measured using Area Under the ROC 

Curve (AUC), where chance level is .5 and perfect classification 

is 1. Confusion (AUC = .637), engagement (AUC = .554), and 

frustration (AUC = .609) were detected at above-chance levels. 

Prospects for improving the method of finding likely positions of 

affective states are also discussed. 
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1. INTRODUCTION 
Educational activities like playing educational games [9], 

interacting with a computerized tutor [4], and comprehending text 

[13] have been linked to affective experiences that potentially 

play important roles in the learning process. Thus, automatically 

detecting and responding to specific affective states can be a 

useful technique for improving educational software [5]. A wide 

variety of approaches have been used to detect students’ emotions 

and tailor instruction to their affective needs (see [8] and [5] for 

reviews). Affect detection is a core challenge that needs to be 

addressed before affect-sensitive instructional strategies can be 

devised. 

Affect detection during interactions with educational technologies 

are a widely studied problem. The two most common approaches 

involve the use of interaction data (e.g., clicks, response times) 

from log files (called sensor-free detection as reviewed in [1]) and 

the use of physiological/behavioral sensors, such as webcams, 

electrodermal sensors, posture sensors, and so on (called sensor-

based affect detection as reviewed in [3]). As an illustrative 

example, Kai et al. [11] built both interaction-based and video-

based affect detectors while students played an educational game 

called Physics Playground [14]. Their data included affect labels 

corresponding to specific moments in the learning session 

(provided by human observers in real-time). The metric of 

performance was A', a close approximation of Area Under the 

ROC Curve (AUC), where A' = .5 is chance level and 1 is perfect 

classification. They were able to detect affective states at levels 

above chance: confusion (A' = .588 for interaction-based, .622 for 

face-based), engaged concentration (A' = .586 interaction, .658 

face), and frustration (A' = .559 interaction, .632 face).  

The aforementioned study highlights two commonalities of affect 

detection during learning from educational software. First, the 

software is typically interactive in nature, thereby providing 

considerable opportunities for external events (e.g., a new 

problem, submission of a response, system feedback, a hint) to 

trigger affective states. Information on these events and students’ 

responses to these events provide valuable information to guide 

affect detection. Second, the data (log-files, videos, etc) used to 

build affect detectors is accompanied by affect labels 

corresponding to specific moments in a learning session. This 

allows label-based segmentation of the data stream and affords 

pinpointing the sections of the data stream for affect detection 

(typically windows of 10-20 seconds before the labels; e.g., [9]). 

Data in some educational contexts are not well suited to creating 

affect detectors. For example, in self-paced reading tasks there are 

not necessarily many key events that are likely to trigger affective 

responses, unlike many educational activities where there is 

frequent feedback and interaction. Similarly, not all educational 

experiences include labeled-data that can be used to pinpoint the 

temporal location of affective states. For example, students might 

self-report their affective states after reading an entire passage or 

viewing an online lecture. This raises the additional challenge of 

how to segment the data stream for affect detection. 

The present paper involves affect detection in the context of a 

noninteractive, but everyday learning task, involving mechanical 

reasoning from illustrated texts [7]. Students were presented with 

a complete text passage with an associated diagram for two 

minutes of study. Students self-reported their affective states after 

each a two minute study session, rather than any specific moment 

in the session. This data raised many challenges. First, interaction 

data was non-existent as there are no page turns or other 

navigation features that can be used to gain information about 

student behaviors. Due to the lack of interaction information, we 

use facial features extracted from videos of students’ faces to 

detect affective states as they processed the text/diagram. Second, 
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without predictable events in the task that could trigger affective 

states and without affect labels during the study session, the 

position within a video where facial expressions of affective states 

are likely to occur is unknown. Rather than analyzing the entire 

video, knowing the location of affective states is important 

because the duration of affective experiences can be short and the 

facial expressions associated with affective states can be even 

shorter [2,6]. To address this problem we explore affect detection 

using different data window sizes and window positions within 

face videos to determine where displays of affect tend to occur 

and how long they last. 

We also studied the role of learning goals on affect detection 

performance. Specifically, students studied the illustrated texts 

under two different instructional conditions. The first was to 

simply learn about a mechanical device (general instructions). 

This was followed by a focused goal that either directed students 

to review key components of the device or to pinpoint a particular 

problem with the device (specific instructions). We anticipate 

differences in affect detection results between the two types of 

instructions because they are expected to engender different levels 

of processing. Thus, we also build separate detectors for the two 

types of instructional goals to determine if there was a notable 

difference in detection performance. 

Our main approach consisted of applying machine learning 

techniques to build detectors of confusion, engagement, and 

frustration with features extracted from facial videos using CERT 

[12], which is a well validated computer vision tool for extracting 

texture-based facial features. Detection results with different 

window sizes and positions show both the potential and the 

difficulty of detecting affective states from face videos when little 

is known about when displays of affect might likely occur. The 

data in this study come from studying instructional texts with 

illustration, and as such is representative of potential real-world 

education scenarios. Thus, determining how to detect affective 

states in this context is important for improving computerized 

education systems. 

2. METHOD 
Data Collection. Data were collected from 88 college students 

from the Psychology subject pool at a large public university in 

the mid-South. These students from diverse backgrounds were 

asked to study illustrated texts about four everyday devices: an 

electric bell, a toaster, a car temperature gauge, and a cylinder 

lock. The illustrated texts were taken from Macaulay’s book, The 

Way Things Work (1988), with text order counterbalanced across 

participants. Each of the general and specific study instructions 

lasted for two minutes. Videos of the students’ faces were 

recorded with webcams mounted on the computer monitors. Upon 

completion of each two-minute study session, students rated their 

levels of engagement, confusion, and frustration on scales of 1 

(very little) to 6 (very much). Students studied all four devices 

with device order counterbalanced across students, thereby 

resulting in 704 videos (88 students × 4 devices × 2 study goals 

per device). 

Three students’ videos were discarded due to recording errors, 

which resulted in 680 usable videos. These videos were then 

analyzed using CERT, which computed the likelihoods of 

occurrence for facial action units (AUs) in every video frame. 

Large outliers in AU likelihoods were found in the last two 

seconds of most videos, which are probably the result of students 

posture shifts in response to the end of the session. The last 2 

seconds were removed to compensate for these anomalies, so each 

video was then exactly 1 minute 58 seconds long. 

Feature Engineering. CERT was able to detect 20 different AUs 

as well as unilateral (one side of the face only) AUs, head 

orientation, and nose position. From the CERT data, windows of 

eight different sizes (2, 3, 6, 9, 12, 15, 20, and 30 seconds) were 

generated. For each size, windows were drawn from the 

beginning, middle, and end of each video. If the window came 

from the beginning or the end of the video, the margin from the 

beginning or the end was equal to the length of the window. 

Figure 1 illustrates examples of windows created in this manner. 

Figure 1. Positions of 12-second windows during the task. 

The AU data of the windows were standardized within each 

student. This was followed by feature generation, in which the 

median, maximum, and standard deviation of the frame-level AU 

likelihoods were computed within each window and used as 

features. Some windows had less than one second of valid data, 

largely because the camera could not capture the student’s face 

when they moved too much, leaned outside the camera’s field of 

view, or when the face was occluded due to gestures. These 

windows were removed from the dataset, as we assumed that an 

affective facial expression would usually be longer than one 

second. Features exhibiting high multicollinearity (variance 

inflation factor > 5) were removed. 

Supervised Classification. The features obtained above were 

used to construct classification models using the Waikato 

Environment for Knowledge Analysis (WEKA), a machine 

learning tool. 

The classification task comprised binary high vs. low affect 

ratings for confusion, frustration, and boredom. The medians of 

the engagement, confusion, and frustration ratings on the 1-6 scale 

were 4, 2, and 1, respectively. We used a median split to discretize 

the affect ratings into “low” and “high”, discarding the median 

instances except in the case of frustration where the median was 1. 

For frustration 1 was used as the “low” label. 

For model validation, leave several out student-level cross-

validation was applied. The training data were randomly chosen 

from two thirds of the students. RELIEF-F feature ranking was 

used to select the most diagnostic features on the training data 

only. The data of the remaining students were used to test the 

generalizability of the classifiers. Each model was trained and 

tested for 150 iterations with random students selected for training 

and testing each iteration to reduce random sampling error. 

Fifteen different classifiers were applied to help determine which 

among the eight window sizes tended to work best. Regression 

analysis was also explored, though the resulted models showed 

little promise and will not be discussed further. 

3. RESULTS 
The best classification models that merged videos recorded during 

both general and specific study instructions are listed in Table 1. 

The AUCs for confusion and frustration were well above chance, 

whereas the AUC for engagement was only slightly higher than 

chance level. 

:12 :24 :53 1:05 1:34 1:46 1:58:00
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It should be noted that there were fewer than 680 instances (the 

total number of usable videos) for these classification models. 

This was largely because instances that captured less than a 

second of data were eliminated and the median splits that were 

performed to ascertain “low” and “high” values resulted in the 

loss of instances with affect ratings at the median. 

General vs. Specific Study Instructions. The best AUCs for 

each video type are in Table 2. We note that for engagement, 

AUCs for individual general-instruction and specific-instruction 

models were higher than when the videos were combined. 

However, for confusion and frustration, it seems that the best 

AUCs are mostly equivalent across both individual videos and 

combined videos. 

Table 2. Comparison of classification performance (AUC) for 

models using only explanation, only review, or both types of data. 

Affective State General Specific Both 

Confusion 0.664 0.606 0.637 

Engagement 0.610 0.580 0.554 

Frustration 0.600 0.620 0.609 

 

Window Position. The best AUCs (for combined models) with 

respect to the three window positions (i.e., beginning, middle, and 

end) are shown in Figure 2. Clear patterns stand out for confusion 

and frustration. The windows taken from the beginning of the 

videos seem to be more effective for confusion than those taken 

from the middle or the end of the videos, whereas the windows 

drawn from the end of the videos may best capture frustration. 

There is no clear pattern for engagement. 

Figure 2. AUC of models using data from different positions 

within videos. 

Window Size. Figure 3 shows the best AUCs as a function of 

window size for the combined models. The window position was 

held constant as the best window position for each affective state 

as noted in Figure 2. Confusion and frustration again show 

interesting patterns. AUC peaks at a certain window size where 

classification is much more successful than the surrounding 

window sizes. The peaks for the AUCs of confusion and 

frustration both occur when the window size is relatively small (9 

seconds for frustration and 6 seconds for confusion). Conversely 

the window size seems to have no notable relationship with AUC 

for engagement. 

Figure 3. AUC of models as window size varies. 

4. DISCUSSION 
The novelty of the contributions in this paper stems from the 

differences between data in this study and previous affect 

detection work. Facial expressions of affect are often related to 

events in an interface (e.g., feedback, new problems), but the 

present study tracked affect in a noninteractive study activity –

comprehension from illustrated texts. Affect labels used for 

detection in this study were given as retrospective judgments 

covering an entire 2-minute study period, so they do not provide 

any information about the appropriate position in the video to 

search for facial expressions. Thus the position of potential facial 

expressions in the face videos is entirely unknown. Unlike related 

studies with affect labels not tied to specific moments in a 

learning session (e.g., [10]), the current research used a subset of 

data from the session rather than considering all data in the 

session. This approach was chosen to better capture the brief 

nature of affective facial expressions. In the remainder of the 

section we discuss our main findings, and highlight limitations 

and avenues for future work. 

Main Findings. The results above show that confusion and 

frustration ratings of the students can be detected with greater 

accuracy than the engagement rating, but that detection was 

successful above chance for all three affective states despite the 

difficulty of identifying a brief affective facial expression within 

the videos. However, if we split the general-instruction videos 

from the specific-instruction videos, the engagement rating may 

be better modeled, especially for the general videos. For 

confusion, a 9-second window at the beginning of the video 

worked best for classification; for frustration, a 6-second window 

at the end of the video was best. There were no clear patterns with 

respect to window position or window size for engagement. 

The results suggest that when given a video with the occurrences 

of different affects unknown, affect ratings for confusion, 

frustration, and potentially engagement can still be well modeled. 

Smaller window sizes such as 6 or 9 seconds can be a good start 

to find such best models for confusion and frustration, which 

parallels the results in previous research [2]. Also, clips taken 

from the beginning of the video may yield good models for 

confusion, and those taken from the end of the video may work 

well for frustration. This seems to suggest that students’ facial 

expressions at the beginning of the 2-minute study session can 

potentially indicate how confused they think they are in the end, 

0.50

0.55

0.60

0.65

Confusion Engagement Frustration

Beginning Middle EndAUC 

0.50

0.55

0.60

0.65

2 3 6 9 12 15 20 30

Window Size (Seconds) 

Engagement 

Confusion 

Frustration 

AUC 

Table 1. Overview of results when general and specific instructional videos were combined. 

Affective State Classifier AUC Accuracy No. Instances No. Features Window Size 

Confusion Updateable Naïve Bayes 0.637 62% 352 65 9 seconds 

Engagement AdaBoostM1 0.554 55% 403 49 20 seconds 

Frustration AdaBoostM1 0.609 64% 356 39 6 seconds 
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and that their facial features at the end of a session may provide 

evidence as to how frustrated they rate themselves to be. It seems 

that when students confront a specific task, their first impression 

or assessment of the difficulties and intricacies of the task can last 

until the end of the task. As they try to understand new concepts 

or to tackle problems, they experience the details of the task that 

they might not have known before. This may be why at the end of 

the task, whether they completely absorb the concepts or solve the 

problems, they may still feel frustrated and challenged and such 

emotions can be detected by analyzing facial expressions. 

The reasons why engagement detection is a difficult task in this 

context may be due to differences in facial expressions of 

engagement between the general and specific study periods. It is 

possible that students’ definitions of engagement may be linked to 

the particular task they are working on. General and specific study 

periods may be essentially different tasks, the former requiring 

students to intake new concepts and the latter challenging students 

to focus on specific aspects of concepts they have learned. Thus 

students may experience and display engagement differently 

between the two study periods, which may explain why model 

performance improved when each period was analyzed 

independently. 

Limitations and Future Work. The results were promising, but 

there are a few limitations to this research. First, the number of 

videos was rather low and around 30% of the windows had to be 

discarded due to difficulties in registering the face (mostly due to 

hand-over face gestures). Also, the videos for the research were 

only 2 minutes long. If the window size is 30 seconds, trimming 

off the beginning and end 30 seconds from a video indicates that 

we only have one minute left for the video and the segments taken 

from this video can be overlapping, which is not ideal. Further 

research should consider a greater number of longer videos, which 

would allow a more thorough search of window positions and 

window sizes, as well as a test of the generalizability of our 

results to longer learning sessions.  

In addition, we adopted a rather arbitrary approach of searching 

the start, middle, and end of each video to identify diagnostic 

affect expressions. In future work, we will delve more deeply into 

the data we already have. The feature selections of models will be 

examined to determine if different AUs are selected for different 

parts of the videos. Additionally, different methods will be 

applied to search for positions in the videos where affective facial 

expressions occur. For example, we may utilize the 9-second 

window size to perform a random sampling across all videos, 

taking segments from random positions within each video to offer 

more insight into how facial expressions can be leveraged for 

affect detection. It may also be possible to develop techniques for 

finding the optimal window position on a per-video basis, for 

example by searching for peaks or valleys in calculated features, 

and using windows of data specific to each video. 

Concluding Remarks. In summary, this paper introduces a 

potential method to detect students’ affective states in non-

interactive instructional contexts when the locations and durations 

of affective facial expressions are unknown. Much work remains 

to be done to improve these techniques, but our results show that 

detecting affective states with these challenging data is certainly 

possible, highlighting the importance of correctly identifying the 

position and length of windows of data within each video. 
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