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ABSTRACT
The problem of mapping items to skills is gaining interest
with the emergence of recent techniques that can use data
for both defining this mapping, and for refining mappings
given by experts. We investigate the problem of refining
mapping from an expert by combining the output of dif-
ferent techniques. The combination is based on a partition
tree that combines the suggested refinements of three known
techniques from the literature. Each technique is given as
input a Q-matrix, that maps items to skills, and student test
outcome data, and outputs a modified Q-matrix that consti-
tutes suggested improvements. We test the accuracy of the
partition tree combination techniques over both synthetic
and real data. The results over synthetic data show a high
improvement over the best single technique with a 86% error
reduction on average for four different Q-matrices. For real
data, the error reduction is 55%. In addition to the substan-
tial error reduction, the partition tree refinements provide
a much more stable performance than any single technique.
These results suggest that the partition tree is a valuable
refinement combination approach that can effectively take
advantage of the complementarity of the Q-matrix refine-
ment techniques. It brings the goal of using a data driven
approach to refine the item to skill mapping closer to real
applications, although challenges remain and are discussed.

1. INTRODUCTION
Defining which skills are involved in a task is non trivial.
Whereas task outcome is observable, skills are not. This
layer of opacity leaves a world of possibilities to define which
skills are behind task performance, and no obvious evidence
to know if the proposed definition is correct or not. Means to
provide such feedback would be highly valuable to teachers
and designers of learning environments, and we find numer-
ous recent efforts towards this end in the last few years.
They are reviewed in section 2.

We developed an approach that takes the outpout of a com-
bination of techniques to detect likely errors of task to skills

mappings given by experts. We investigate the combination
of three data-driven techniques [3, 2, 7] based on a partition
tree algorithm that creates binary partitions. See also [6]
for a more detailed comparison of the performance of these
thee techniques.

The performance of the partition tree approach is tested
over synthetic and real data. But even in the case of real
data, the approach to grow the partition tree trains on syn-
thetic performance data generated from a set of Q-matrices
that are similar to the Q-matrix to refine. This procedure is
chosen because only synthetic data provides a large enough
training set, and because it also provides ground truth la-
belling of latent variables.

In the rest of this text we use the term items to refer to ques-
tions or tasks that can be part of a formative or summative
assessment, or exercises within an e-learning environment.
Skills can be the mastery of concepts, factual knowledge, or
any ability involved in item outcome success. However, the
models reviewed here assume a static student skills state,
as opposed to the Knowledge Tracing model and its deriva-
tives [11], for example, which rely on dynamic data. We
return to this limitation in the Discussion.

The different techniques to validate a Q-matrix are first de-
scribed, followed by the description of the approach, the
experiments, and the results.

2. Q-MATRICES AND TECHNIQUES TO
VALIDATE THEM FROM DATA

Q-matrix QM-1

Skill
Item 1 2 3

1 1 1 0
2 1 0 1
3 1 0 1
4 1 0 0
5 1 1 0
6 1 1 0
7 1 0 1
8 1 0 1
9 1 0 0

10 1 0 0
11 1 1 0

A mapping of item to skills is
termed a Q-matrix. An exam-
ple of a 11 items and 3 skills
Q-matrix is given beside. It
corresponds to the Q-matrix la-
belled QM 1 in the results sec-
tion below. From this exam-
ple, item 4 requires skill 1 only,
whereas item 11 requires skills 1
and 2. If all specified skills are
required to succeed the item, the
Q-matrix is labeled conjunc-
tive. If a any of the required
skill is sufficient to the item’s
success, then it is labeled dis-
junctive. The compensatory
version corresponds to the case
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where each required item increases the chances of success in
some way. Conjunctive Q-matrices the most common and
all matrices of the experiments here are of this type.

The conjunctive/disjunctive distinction is also referred to as
AND/OR gates. Skills models such as DINA (Deterministic
Input Noisy AND) and DINO (Deterministic Input Noisy
Or) make reference to this AND/OR gates terminology.

The DINA model [10] defines the probability of success to
an item as a function of whether the skills required are mas-
tered, and of two parameters, the slip and guess factors.
Mastery is a binary value based on the conjunctive frame-
work: if all required skills are mastered then the value is 1,
else it is 0. Slip and guess parameters are values that gen-
erally vary on a [0, 0.2] scale. The probability of success to
an item j by a student i is thereby defined as:

P (Xij =1 | ξij) = (1− sj)ξijg
1−ξij
j

where ξij is 1 if student i masters all required skills of item j,
0 otherwise. sj and gj are the slip and guess factors.

Two techniques for Q-matrix validation surveyed here rely
on the DINA model, whereas the third one relies on a ma-
trix factorization technique called ALS (Alternative Least
Squares), or more precisely ALSC for the conjunctive version
of the technique. We briefly review each technique below.

2.1 Technique 1: MinRSS
Chiu defines a method that minimizes the residual sum of
square (RSS) between the real responses and the ideal re-
sponses that follow from a given Q-matrix [2] under the
DINA model. The algorithm adjusts the Q-matrix by first
estimating the mastery of each student, then choosing the
item with the worst RSS over to the data, and replacing it
with a q-vector that has the lowest RSS, and iterates until
convergence. We refer to this technique as MinRSS .

2.2 Technique 2: MaxDiff
The method defined by de la Torre [3] searches for a Q-
matrix that maximizes the difference in the probabilities of
a correct response to an item between examinees who pos-
sess all the skills required for a correct response to that item
and examinees who do not. It also relies on the DINA model
to determine item outcome probability, and on an EM algo-
rithm to estimate the slip and guess parameters. Probabil-
ity differences represents an item discrimination index: the
greater the difference between the probability of a correct
response given the skills required and the probability given
missing skills, the greater the item is discriminant. As such,
we can consider that the method finds a Q-matrix that max-
imizes item discrimination over all items. We refer to this
technique as MaxDiff .

2.3 Technique 3: Conjunctive alternate
Least-Square Factorization (ALSC)

The Conjunctive alternate Least-Square Factorization (ALSC)
method is defined in [7]. Contrary to the other two meth-
ods, it does not rely on the DINA model as it has no slip
and guess parameters. ALSC decomposes the results matrix
Rm×n of m items by n students as the inner product two

smaller matrices:

¬R = Q¬S (1)

where ¬R is the negation of the results matrix (m items by
n students), Q is the m items by k skills Q-matrix, and ¬S is
negation of the the mastery matrix of k skills by n students
(normalized for rows columns to sum to 1). By negation, we
mean the 0-values are transformed to 1, and non-0-values
to 0. Negation is necessary for a conjunctive Q-matrix.

The factorization consists of alternating between estimates
of S and Q until convergence. Starting with the initial ex-
pert defined Q-matrix, Q0, a least-squares estimate of S is
obtained:

¬Ŝ0 = (QT
0 Q0)−1 QT

0 ¬R (2)

Then, a new estimate of the Q-matrix, Q̂1, is again obtained
by the least-squares estimate:

Q̂1 = ¬R¬ŜT
0 (¬Ŝ0 ¬ŜT

0 )−1 (3)

And so on until convergence. Alternating between equa-
tions (2) and (3) yields progressive refinements of the ma-

trices Q̂i and Ŝi that more closely approximate R in equa-
tion (1). The final Q̂i is rounded to yield a binary matrix.

Note that (¬QT
i ¬Qi) or (¬Ŝi ¬ŜT

i )i may not be invert-
ible, for example in the case where the matrix Qi is not
column full-rank, or the matrix Si is not row full-rank. This
is resolved by adding a very small Gaussian noise before
attempting the matrix inverse.

2.4 Other techniques
We chose the three techniques described above as the can-
didates to combine refinements that can potentially provide
more accurate suggestions than any of the individual ones,
but any other equivalent technique could also be combined in
the same fashion instead of the three chosen ones here. Po-
tential candidates could be, for example, a technique based
on a Bayesian approach by DeCarlo et al. [5], and recent
techniques that rely on time information [13, 12]. Yet an-
other recent approach relies item text [8] to establish the
mapping of items to skills.

Although the results obtained through a combination of
techniques may vary as a function of the specific techniques
chosen, the general principle remains valid for all possible
combinations. And there is no reason to believe that the par-
ticular combination of the current study is better or worse
than other potential combinations.

2.5 General validation principle
The general idea behind the validation of Q-matrices is to
introduce a perturbation to a matrix and run a refinement
technique that takes the perturbed matrix and test data
as input, and outputs a set of refinements. In all, 8 cases
can occur and they are listed in table 1. The 8 cases are
a combination of the original cell value, perturbation, and
value proposed (2× 2× 2).

The outcome of a proposed value from the refinement tech-
nique is considered correct if it corresponds to the original
value before the perturbation, and incorrect otherwise. We
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Table 1: Refinement outcomes

Perturbation Refinement

Value Value Value Outcome
before after proposed

Perturbed cell
(1) 0 1 0 correct (TP)
(2) 1 0 1 correct (TP)
(3) 0 1 1 wrong (FN)
(4) 1 0 0 wrong (FN)

Non Perturbed cell
(5) 0 0 0 correct (TN)
(6) 1 1 1 correct (TN)
(7) 0 0 1 wrong (FP)
(8) 1 1 0 wrong (FP)

also refer to the signal detection terminology with respect to
perturbations to introduce further classification of the error
types:

• True Positives (TP): perturbed cell that was cor-
rectly changed
• True Negatives (TN): non perturbed cell left un-

changed
• False Positives (FP): non perturbed cell incorrectly

changed
• False Negatives (FN): perturbed cell left unchanged

3. COMBINING TECHNIQUES WITH A
PARTITION TREE

Each of the technique described above uses a different al-
gorithm to provide a potentially improved Q-matrix. In
that respect, their respective outcome may be complemen-
tary, and their combined outcome can be more reliable than
any single one. This is the first hypothesis and objective
of our study. Furthermore, some algorithms are more effec-
tive in general, but may not be the best performer in all
context. Identifying in which context an algorithm provides
the most reliable outcome is another objective of combin-
ing these techniques. We will see that the first hypothesis
is confirmed in the results of the partition tree labeled (1)
and the second is also confirmed by the results of partition
tree (3).

3.1 Partitioning tree
To implement the partition tree combination of the three
techniques, we chose the rpart package for this purpose [19].

The rpart package builds classification models that can be
represented as binary trees. The tree is constructed in a
top-down recursive divide and conquer approach. At each
node in the tree, cases are split into two groups based on
their attribute value.

3.1.1 Tree building
Attribute selection is done on the basis of Gini index in
rpart. The Gini index [16] can be calculated as :

Gini(D) = 1−
n∑
j=1

p2
j

where n is the number of classes and pj is the relative fre-
quency of class j in dataset D. If attribute A is chosen to
be a split on dataset D into two subset D1 and D2, then the
Gini index for attribute A is defined as:

GiniA(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2)

Once we get the Gini index to add attributes we can calcu-
late a Delta reduction for each attribute:

4Gini(A) = Gini(D)−GiniA(D)

The attribute that creates the largest reduction can be cho-
sen as a splitting point in the decision tree.

3.1.2 Classification with the tree
In our case, attributes are sometimes numeric, such as fac-
tors, and sometimes binary, such as cell values in the Q-
matrix. And the class is binary since it is also a Q-matrix
cell value. At each point of decision from the root node of
the tree to a leaf node, a choice is made to go left or right
based on the splitting point of each node. The nodes in the
partition trees of this experiment are the output of the tech-
niques (suggested values) and the factors considered (they
are described in the next section).

Once a leaf node is reached, classification is based on the
majority vote of the cases that fall under that leaf node: if
the training set contained more case labeled ’0’, this is the
proposed value, else it is a ’1’.

3.2 Factors considered
The partition tree relies on each technique’s output, the Q-
matrix refinement proposition, and on a number of factors
that may provide information about the most reliable tech-
nique refinement in a given context. The factors considered
to be relevant are the following:

• Skills per row. Items can require one or more skills.
The skills per row indicates the number of skills re-
quired.

• Skills per column. The sum of the skills per columns
is an indicator of how often this skill is measured by
the different items of the Q-matrix.

• Stickiness. If a technique systematically proposes a
change to a cell of the Q-matrix, no matter what the
perturbation is, this is an indication that this particu-
lar change to the original Q-matrix is an artifact of the
structure of the Q-matrix and the algorithm. We call
this property the stickiness of a cell of the matrix and
it is measured by the proportion of times the value of
the cell is incorrectly changed over all perturbations.

Recall that we train the partition tree over synthetic
data for which the ground truth is known. We can
therefore reliably identify incorrect changes. This is
detailed below.
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3.3 Training of the partition tree
The partition tree is trained on data that contains the fol-
lowing set of attributes:

• original(j,k): value of cell (j, k) in the original matrix.
This is the target class of the partition tree and it
corresponds to “Value before” in table 1.
• MaxDiff (j,k), MinRSS (j,k), ALSC(j,k): the three values

proposed as refinements by the respective technique in
place of the original value. For every record, at least
one of these must be different from the original one, or
else it is a perturbated cell record. This corresponds
to “Value proposed” in table 1, one for each refinement
technique.
• RSQi,j , CSQi,k: the number of skills per row and column

attributes (see section 3.2). These factors are per Q-
matrix, Qi, and per row j and column k.
• SFMaxDiff(Qi,j,k), SFMinRSS(Qi,j,k),
SFALSC(Qi,j,k): the stickiness factors of the cell, one for
each matrix and technique.

The training data is generated through a perturbation pro-
cess. Each cell of a Q-matrix is perturbated, in turn and
one at a time, to create a new training record containing
the above attributes. However, non perturbated cells that
are left unchanged by all refinements techniques, cases (5)
and (6) in table 1, are left out of the training data because
they were assumed to be uninformative.

The size of the data set to train the partition trees over
is very large. For the permutations of a single Q-matrix,
the number of perturbated and non perturbated cells ranges
from approximately 50,000 to 250,000.

Training of the partition tree for expert Q-matrices with
synthetic data. Whereas for synthetic data, we can gen-
erate a large array of Q-matrices and ample training and
testing data, real data poses a challenge in that respect.
Typically, for a single data set, we have only a few ex-
pert Q-matrices, and often a single one is available. For a
3 skills × 11 items matrix, only 33 single perturbations are
possible to train a partition tree. Furthermore, and unlike
synthetic data, we do not know what are the valid refine-
ments in the Q-matrix. A “sticky” cell might be a valid
refinement, and so can some of the perturbations that are
presumed incorrect.

To get around these issues, the training of the partition tree
is conducted over synthetic data where the ground truth is
know and where we can use a large span of matrices similar
to the expert one. Similarity to the Q-matrix to refine is
achieved by random permutations the cells of the original
Q-matrix. For each Q-matrix, a total of 1000 Q-matrices
are generated through this permutation process. Item out-
come data for 400 simulated students is also generated. The
R package CDM and the sim.din function [15] is used for
generating synthetic student item outcome data, using 0.2
slip and guess factors.

4. REAL DATA AND Q-MATRICES
The primary source of real data for our study, from which the
synthetic data is also mimicked, is the well known data set

Table 2: Four Q-matrices over 11 items of Tatsuoka’s
data set on student item outcome

Number of
Description

skills items cases

QM 1 3 11 536 Expert driven.
Skill 1 shared by all
items. From [9]

QM 2 5 11 536 Expert driven.
From [3]

QM 3 3 11 536 Expert driven.
Single skill per
item. [15]

QM 4 3 11 536 Data driven,
SVD-based.

on fraction algebra problems from Tatsuoka [17] (see table 1
in [4] for a description of the problems and of the skills).
The data contains complete answers of 536 students to 20
questions items, but only a subset of 11 items are used by the
Q-matrices in the current study. It corresponds to the set of
common items to the different Q-matrices of the experiment.

The original Q-matrix of this data set contains 8 skills and,
as mentioned, 20 items. However, a number of variations of
this matrix have been proposed and studied with a smaller
number of skills and items [9, 3, 15]. We also chose to focus
on this smaller skills set since they offer three very differ-
ent expert-defined Q-matrices over the same set of items.
Moreover, a smaller set of skills allows us to better establish
the validity of the approach on a simpler problem, leaving
for later the demonstration of whether it scales correctly to
larger sets. The Q-matrices are described below.

Four Q-matrices are considered. Three of them have been
studied in the literature and one is defined by ourselves.
Their main attributes are reported in table 2 and the actual
Q-matrices are shown in figure 1 (except for QM 1 which is
introduced in section 2).

Skills of
QM 2 QM 3 QM 4

Item 1 2 3 4 5 1 2 3 1 2 3
1 1 1 1 1 0 0 1 0 1 1 0
2 1 1 1 1 1 0 0 1 1 0 1
3 0 0 1 0 0 0 0 1 0 1 0
4 1 1 1 1 0 1 0 0 1 0 0
5 1 1 1 1 0 0 1 0 1 0 0
6 1 1 0 0 0 0 1 0 0 0 1
7 1 0 1 1 1 0 0 1 1 0 1
8 1 0 1 0 0 0 0 1 0 1 1
9 1 0 1 1 0 1 0 0 1 0 0

10 1 1 1 1 0 1 0 0 1 0 1
11 1 1 1 1 0 0 1 0 1 0 0

Figure 1: Q-matrices 2, 3, and 4.

As mentioned, all Q-matrices are derivatives of the Tat-
suoka [17] 20 item set. QM-1, QM-2 and QM-3 are available
from the CDM package. All data sets have 3 skills, except
for data set 2 which has 5 skills. Data set 3 is the only one
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with a single skill per item. Matrix QM 4 was created for the
purpose of this study, using the three largest singular values
and the items to skills V matrix of the SVD decomposition
of the Tatsuoka data mentioned above.

Therefore, while these four Q-matrices all share the same
11 items, they vary by the number of skills, item monoticity
or not, whether a skill is common to all items, and whether
they are driven from data or driven from expert analysis of
item skills involved.

5. GENERAL PROCEDURE SUMMARY
AND METHODOLOGICAL NOTES

To ease the understanding of the general process of the ex-
periments, and at the expense of introducing some redun-
dancy, figure 2 summarizes the main steps and dependencies.
The top greyed box illustrates the process to generate the
data for partition trees training, and the synthetic data for
performance evaluation. The bottom greyed box illustrates
the two test procedures for real and synthetic data. We
explain the figure below and fill in some details as well.

Data generation. For each of the four Q-matrices (QMi),
the data generation process (1) 1000 permutations (2). Du-
plicates are kept if any. For each permutation, synthetic test
outcome data of 400 simulated students is created with the
CDM utility sim.din (3). Finally, each QM is perturbated,
and that Q-matrix is fed to each of the three techniques
to generate training data for the partition tree described in
section 3.3 (4).

Test over real data. The experiment to assess the perfor-
mance over real data takes three sources of input: the Q-
matrices (1), the fraction algebra data set of Tatsuoka as
described in 4 (6), and finally a partition tree (5) trained
from data generated (4). It outputs a set of refinements
from the different partition trees and for each of the three
techniques as well (7). Finally, the refinements are compared
with the original Q-matrices in (1).

Test over synthetic data. For assessing the performance
over synthetic data (9), the process is similar, with the main
difference that refinements are based on the synthetic test
outcome data generated in (3) instead of real data. And the
comparison is not done over the Q-matrices in (1), but in-
stead over the permuted Q-matrices in (2), which constitute
the ground truth as they are used to generate the data.

5.1 Data set size, cross-validation, and the
assumption of correctness of expert
Q-matrices

As shown in figure 2, synthetic test outcome data (3) is used
for both the training of the partition trees and testing over
synthetic data. This large data set (see sect. 3.3) leaves little
space for over fitting of the partition trees, and therefore the
cross-validations bring very small differences in performance:
accuracy/RSS error reduction is the same between a cross-
validated and a non cross-validated performance assessment

Data generation

Test Synthetic

Test Real

2. Permutated QMs
(ground truth)

3. Synthetic test outcome data 
 with DINA model 

 (400 records)

10. Comparison 
 with ground truth

5. Partition trees
(3 types)

provides 
 ground truth 

 labels for 
 learning trees

Perturbations
(one per cell)

4. Refinements with 
 three techniques

9. Refinements with 
 partition trees and 

 the three techniques 

7. Refinements with 
 partition trees and 

 the three techniques 

8. Comparison 
 with original QMi

6. Fraction data set

Perturbations
(one per cell)

1. QMi

Permutations
(1000)

Figure 2: General validation procedure for each Q-
matrix (QMi). See section 5 for details.

at the 0.01 level reported in the results below.

However, for real data, the size of the testing data set is
much smaller. It varies between 366 (QM-2) and 561 (QM-
3), because the test data is based solely on the permutations
of the four Q-matrices. But because the test procedure uses
partition trees trained from synthetic data, there are no bias
issues and cross validation is not required here.

Note also that, for real data, the expert-defined Q-matrix is
not necessarily consistent with the (unknown) ground truth.
Nevertheless, we consider this Q-matrix as valid and the
evaluation of the proposed refinements are made by compar-
ing refinements with expert-defined Q-matrices, as though
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Table 3: Results for synthetic data

QM
Technique Partition tree

MinRSS MaxDiff ALSC (1) (2) (3)

Accuracy of perturbated cells

1 0.81 0.47 0.82 0.81 0.88 0.95
2 0.07 0.26 0.36 0.52 0.53 0.83
3 0.96 0.49 0.95 0.99 1.00 1.00
4 0.90 0.49 0.85 0.90 0.92 0.96

X 0.69 0.43 0.75 0.81 0.83 0.93

Accuracy of non perturbated cells

1 0.97 0.56 0.44 0.97 0.91 0.99
2 0.99 0.53 0.50 0.99 0.99 0.99
3 0.95 0.26 0.74 0.95 0.94 0.99
4 0.97 0.56 0.44 0.97 0.97 1.00

X 0.97 0.48 0.53 0.97 0.95 0.99

F-score

1 0.88 0.51 0.58 0.88 0.90 0.97
2 0.13 0.35 0.42 0.68 0.69 0.90
3 0.96 0.34 0.83 0.97 0.97 1.00
4 0.93 0.52 0.58 0.93 0.94 0.98

X 0.72 0.43 0.60 0.87 0.87 0.96

they were the ground truth. We should keep in mind that
the performance score may be negatively biased if this as-
sumption was false, but for the purpose of comparing the
relative techniques performance among themselves, and if
we assume that all techniques are equally affected by this
bias, then it makes no difference to our relative results.

6. PERFORMANCE MEASURES
To measure the performance of the proposed refinements,
we use the difference between the original Q-matrix and the
proposed refinement of a technique. We use the classification
of correct and incorrect refinements introduced in table 1.
Cells that are neither perturbated nor incorrectly suggested
as refinements by any of the technique are ignored in the
analysis (the true negatives of table 1, TN). This is the case
of the large majority and it also is consistent with the train-
ing of the partition tree for which they are also filtered out.

Recovery of a perturbated cell to its original value can be
considered as a recall measure, whereas the non perturbated
cells that are left unchanged can be considered as a precision
measure. In that respect, we define a performance measure
that combines precision and recall of the refinement tech-
nique into a single F-score measure:

F-score = 2× precision× recall

precision + recall

= 2× Acc¬P ×AccP
Acc¬P + AccP

where AccP and Acc¬P are respectively the accuracy mea-
sure of the proposed refinements for the perturbated and
non perturbated cells. This measure gives equal weight to
both types of accuracies and avoids a bias in favour of the
accuracy of the non perturbated cells which can considerably

Table 4: Results for real data

QM
Technique Partition tree

MinRSS MaxDiff ALSC (1) (2) (3)

Accuracy of perturbated cells

1 0.39 0.17 0.52 0.39 0.36 0.67
2 0.35 0.09 0.56 0.60 0.62 0.64
3 0.27 0.09 0.36 0.61 1.00 0.88
4 0.42 0.11 0.58 0.42 0.48 0.61

X 0.36 0.12 0.51 0.51 0.62 0.70

Accuracy of non perturbated cells

1 0.45 0.68 0.56 0.45 0.38 0.60
2 0.93 0.93 0.28 0.94 0.94 0.97
3 0.64 0.83 0.42 0.69 0.76 0.78
4 0.55 0.89 0.32 0.55 0.52 0.51

X 0.52 0.68 0.32 0.62 0.62 0.68

F-score

1 0.42 0.27 0.54 0.42 0.37 0.63
2 0.50 0.17 0.37 0.73 0.74 0.77
3 0.38 0.16 0.39 0.64 0.86 0.83
4 0.48 0.20 0.42 0.48 0.50 0.56

X 0.45 0.20 0.43 0.57 0.62 0.70

outweigh in number the single perturbated cell, even after
filtering out non-perturbated cells that are left unchanged.

7. RESULTS
The results are reported in tables 3 and 4. The format of
these tables first described below.

7.1 Description
The respective results of the four Q-matrices (column QM)
in table 2 are reported. They correspond to a single run
(real data can vary a few percentage points by run, but it is
practically stable for synthetic data due to the large number
of cases). The accuracy of refinement for perturbated and
non perturbated cells are reported separately, followed by
the F-score which combines both types of accuracy. The
averages of the four matrices for each of these these three
performance measures is also reported as X.

The accuracy and F-score of each individual technique is
reported under columns MinRSS , MaxDiff , and ALSC.

The three columns under Partition tree correspond to the
performance as a function of different factors used for build-
ing the tree:

(1) MinRSS + MaxDiff + ALSC. Only the output of
the three refinement techniques is considered.

(2) MinRSS + MaxDiff + ALSC + SR + SC. The
number of skills per row (SR) and skills per column
(SC) of the target cell are taken into account in ad-
dition to the output of each technique. If some tech-
nique performs better under some combination of SR
and SC, this tree will be able to take these factor into
account.
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(3) MinRSS + MaxDiff + ALSC + SR + SC +
Stickiness.MinRSS + Stickiness.MaxDiff + Stick-
iness.ALSC. The tendency of a cell to be a false pos-
itive for the MinRSS and ALSC methods are added.
The Stickiness factor with MaxDiff is omitted here be-
cause it did not yield improvements.

7.2 Synthetic data
The results for synthetic data in 3 show large differences be-
tween the different matrices and across the individual tech-
niques.

The MinRSS method is clearly superior in terms of gen-
eral accuracy, except for the 5-skills Q-matrix where it can
only identify the perturbated cell 7% of the time, and which
brings its average below the ALSC technique. However,
because it introduces fewer false positives (incorrect refine-
ments) than other techniques, it outperform the other two
methods on the F-Score.

On average, the ALSC technique is good at identifying the
perturbated cell with a 75% average, but it also tends to
introduce more false positives and consequently obtains a
lower global F-score than MinRSS .

Another noticeable result is that the results for QM 3 are
very good, in particular for the partition trees which have
perfect performance (rounding at the second decimal). This
is likely attributed to the fact that it defines a single-skill
mapping.

Turning to the main questions addressed in this study, the
results of partition tree (1), which uses only the three tech-
niques’ output, is equal or better on all scores than any
individual one. This confirms the initial hypothesis for syn-
thetic data. Furthermore, the inclusion of factors (partition
trees (2) and (3)) also substantially improves all scores, con-
firming the other hypothesis that some techniques perform
better under a combination of factors and that the partition
tree is effectively able to take advantage of this information.
The stickyness factor is by far the most effective.

7.3 Real data
The results over the real data reported in table 4 show the
same trends as the synthetic data, but bring less pronounced
improvements. They also support both hypothesis.

We do find an exception with the non perturbated cells
where the MaxDiff accuracy is above the partition trees (1)
and (2) and close to (3). This is mainly due to the fact
that more “false positives” are generated by the MinRSS
and ALSC techniques for real data than for synthetic data,
whereas the MaxDiff technique outputs very few changes
in both contexts. That observation is consistent with the
results in [6].

The balance between true positives and true negatives il-
lustrates why the F-score should be the reference: a perfect
score could be obtained over the accuracy of non perturbated
cells if no changes are always suggested, but that would make
such refinement technique useless.

Therefore, turning to the F-scores, the tendencies are highly

consistent with the synthetic data. The F-score of the best
performer, 0.41 of MinRSS , is improved to 0.55 with the
combination of the three techniques, and to 0.66 when all
factors are included in the partition tree.

8. DISCUSSION
The results of the above experiments show that the combi-
nation of Q-matrix refinement techniques using a partition
tree can bring substantial improvements over the best per-
formance of the individual techniques. For synthetic data
the average best F-score of the MinRSS technique, 0.72, is
improved to 0.96, and for real data it is raised from 0.41
to 0.66. These results represent a 86% and 55% error re-
duction for the F-score of the synthetic and the real data
respectively (error reduction = 1− (1− F ′)/(1− F ), where
F is the initial F-score and F ′ is the improved F-score).

In practical terms, if the best technique finds an error in
a Q-matrix 5 out of 10 times, an error reduction of 40%
represents an increase from 5, to 7 out of 10 times, and
the same ratio applies to false errors reduction. And these
figures rest on the assumption that we would know which
technique is the best, whereas according to table 4’s results
the best technique varies across Q-matrices.

Another positive note on the results is that the partition tree
F-scores are more stable across Q-matrices and are system-
atically better than any individual technique when all factors
are taken into account (partition tree 3). This regularity in-
curs that, at least in the space of Q-matrices surveyed, one
can safely choose partition tree refinements without con-
cerns that, maybe, another technique could deliver better
refinements for a specific Q-matrix.

In spite of these encouraging results, limitations and issues
remain.

One limit is that the results are from a single 11 items set,
and from a single domain. We can reasonably believe that
the results vary across contexts and more investigation is
required to assess this variability.

Another limitation is the models investigated in the current
study use static student data: they assume that skill mas-
tery does not change for a single student. This assumption
is false for most data gathered in learning environments,
where students take on exercises as they learn and are being
assessed throughout the learning process. This type of data
can be labeled as dynamic item outcome data because a stu-
dent will be in different states of skills mastery as learning
occurs.

In order to effectively use the existing techniques of Q-matrix
refinement, we would need to be able to detect the moment
when the state of skill mastery changed. Failure do do so
would create noise in the data and impair the effectiveness
of these techniques. Fortunately, substantial progress has
been done in the recent decade or two towards detecting
the moment of learning, such as the large body of work
on Bayesian Knowledge Tracing and Tensor factorization
(for eg. [1, 18]). We can also cite the work of [14] who
refer to a time-varying skills matrix for students and test
their approach on synthetic data. But apart from this recent
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contribution, little work has been done on using this type of
data for refining a Q-matrix, and we can only expect existing
techniques to under perform with dynamic student data.
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