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ABSTRACT
Latent variable models, such as the popular Knowledge Trac-
ing method, are often used to enable adaptive tutoring sys-
tems to personalize education. However, finding optimal
model parameters is usually a difficult non-convex optimiza-
tion problem when considering latent variable models. Prior
work has reported that latent variable models obtained from
educational data vary in their predictive performance, plau-
sibility, and consistency. Unfortunately, there are still no
unified quantitative measurements of these properties. This
paper suggests a general unified framework (that we call
Polygon) for multifaceted evaluation of student models. The
framework takes all three dimensions mentioned above into
consideration and offers novel metrics for the quantitative
comparison of different student models. These properties
affect the effectiveness of the tutoring experience in a way
that traditional predictive performance metrics fall short.
The present work demonstrates our methodology of compar-
ing Knowledge Tracing with a recent model called Feature-
Aware Student Knowledge Tracing (FAST) on datasets from
different tutoring systems. Our analysis suggests that FAST
generally improves on Knowledge Tracing along all dimen-
sions studied.

Keywords
Student Modeling, Knowledge Tracing, parameter estima-
tion, Identifiability, Model Degeneracy

1. INTRODUCTION

Adaptive tutoring systems often rely on student models to
trace the progress of student knowledge to personalize in-
struction. Such student models are usually latent variable
models with the state of student knowledge as the latent
variable. However, finding optimal model parameters is usu-
ally a difficult non-convex optimization problem for latent
variable models. Moreover, in the context of tutoring sys-
tems, even global optimum model parameters may not be
interpretable (or plausible). Knowledge Tracing [4] is one
such latent variable model that has been widely used, and
different properties of its estimated parameters have been
presented in many previous studies: predictive performance
[6], plausibility [1, 6, 19], and consistency [2, 6, 16, 19, 9].
Unfortunately, there are still no unified quantitative mea-
surements of these properties. If prediction of student per-
formance is our only goal, this need is less urgent, since
we can simply pick a model according to classification met-
rics. However, parameters with varying properties might
have different inferences about knowledge, which may result
in different tutoring decisions that can have a large impact
on students. To illustrate, we show examples where two
models that both belong to Knowledge Tracing are fitted
from the same data, and where predictive performance is
not sufficient to pick a good model:

• One model with higher predictive performance asserts
that student knowledge decreases with correct prac-
tices, while the other model asserts the opposite. In
such cases, the former model will suggest continuing
practicing even if students get a lot of correct answers
in a row, while the latter will suggest moving to other
skills in a shorter amount of time.

• Two models have the same predictive performance,
yet one asserts that about 20 practices are required
to reach mastery of a skill, while the other asserts that
only about 3 practices are enough. In such cases, a stu-
dent needs to practice a lot under the former model,
but under the latter model, students can move to learn-
ing other skills more quickly.
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In the first example, the more predictive model lacks plau-
sibility; in the second example, two models lack consistency,
even though they have the same predictive performance. As
a result, we advocate that a student model should be exam-
ined from dimensions besides predictive performance. We
propose a unified quantitative framework, called Polygon,
for the multifaceted evaluation and comparison of student
models. The framework suggests novel metrics to quantify
the properties of a student model along multiple dimensions,
including predictive performance, plausibility, and consis-
tency. Polygon is designed for general latent variable mod-
els that model latent student knowledge and is domain-
independent. In the present work, we demonstrate how
we apply Polygon to evaluate and compare classic Knowl-
edge Tracing with a recent generalized model called Feature-
Aware Student Knowledge Tracing (FAST) [8] in four differ-
ent domains. Section 2 reviews some latent variable student
models and prior work examining their properties; Section
3 describes our Polygon framework and metrics; Section
4 studies the relationship among these metrics and com-
pares Knowledge Tracing with FAST; Section 5 concludes
the work.

2. BACKGROUND
2.1 Latent Variable Student Models
We now review two effective latent variable models for pre-
dicting student performance and inferring student knowl-
edge: Knowledge Tracing [4] and Feature-Aware Student
Knowledge Tracing (FAST) [8]. Knowledge Tracing uses
Hidden Markov Models to model student knowledge as bi-
nary latent variables (either learned or unlearned), given the
observed practice performance (correct or incorrect) and us-
ing four parameters: Init (initial knowledge level), Learn
(learning rate), Guess, and Slip. We learn the parameters
of Knowledge Tracing using the Expectation Maximization
algorithm. A recent model FAST incorporates features into
Knowledge Tracing by replacing the binomial distributions
by logistic regression distributions. It encodes contextual
information as features for the original Knowledge Tracing
parameters. It allows flexible features to affect student per-
formance or knowledge directly. For simplicity, we use fea-
tures in all four parameters in the study. FAST trains fea-
ture coefficients jointly with other parameters using the Ex-
pectation Maximization with Features algorithm [3]. This
algorithm keeps the original E-step and replaces the M-step
by training a weighted regularized logistic regression using a
gradient-based search algorithm (LBFGS). While FAST has
been shown to outperform Knowledge Tracing in many pre-
diction tasks, we are interested in comparing it with Knowl-
edge Tracing in other dimensions.

2.2 Prior Work Examining Properties of Knowl-
edge Tracing

Prior work has examined Knowledge Tracing models from
predictive performance, plausibility, and consistency. We
now review previous studies in each dimension.

Predictive Performance. Measurements of predictive per-
formance have been broadly applied to evaluate student
models. Prior studies have shown several problems with
parameter estimation for Knowledge Tracing, which predic-
tive performance metrics often fail to detect [2, 16, 7]. We

examine this traditional dimension in more depth for both
Knowledge Tracing and FAST, and complement it in other
dimensions, including plausibility and consistency.

Plausibility. Interpretability of a model is a desire prop-
erty because it allows for better scientific claims and prac-
tical applications. Prior studies have used external mea-
surements for validating the plausibility of fitted parame-
ters, such as pre-test scores [6], exercise scores [4], or some
domain-specific measurements [2]. However, such external
resources are not always available. Many studies also ex-
amined plausibility by internal validity. Learning curves
plotted using fitted parameters are inspected [2], and ex-
tremely low learning rates are considered implausible. How-
ever, very difficult skills can have very low learning rates,
and it is not clear what is the suitable threshold for defining
low learning rates. Implausibility has been formally defined
using model degeneracy [1], which refers to situations where
parameter values violate the model’s conceptual meaning.
They defined strong empirical constraints to detect theoret-
ical degeneracy, and designed two specific metrics involving
empirical parameters to detect empirical degeneracy: (i) the
model’s estimated probability that a student knows a skill
is not higher than before the student’s first N actions, or
(ii) the model doesn’t assess that the student has mastered
the skill, even though the student has made a large number
M of correct responses in a row. Under these two cases, the
model is judged to be empirically degenerate. They arbitrar-
ily chose N=3 and M=10 for the study. A later theoretical
fixed point analysis [19] has precisely identified the condi-
tions where models will be empirically degenerate. We are
interested in generally quantifying the plausibility property
based on such a theoretical conclusion, avoiding imposing
empirical parameters during evaluation.

Consistency. Prior work has focused on two aspects of this
dimension. First, the optimization algorithm (namely, the
Expectation Maximization algorithm) can converge to the
local optima of the log likelihood space yielding different
properties of parameters that depend on the initial values
[5, 16]. Although there are studies on setting good initial
values to tackle this problem [5], practically, the strategy of
setting randomly distributed initial values is usually taken.
Yet there is still no principled way to measure the models’
difference in the variation of convergence, and as a result, it
is difficult to get a quantitative view of such a property. Sec-
ond, multiple global optima of Knowledge Tracing exist [16,
2] where observed student performance corresponds to dif-
ferent sets of parameter estimates that make different as-
sertions about student knowledge, yet have identical (under
finite precision) performance predictions [2]. This problem
is referred to as the identifiability problem [2]. Later studies
have presented different (and even contradictory) views of
this problem [19, 9]. These two aspects all relate to the con-
sistency of the parameter space, and in order to determine
their practical implications, we offer a unified view of them.

3. POLYGON EVALUATION FRAMEWORK
Polygon is a novel framework proposed for evaluating gen-
eral latent variable student models from multiple dimen-
sions with multiple metrics, besides simply predictive per-
formance. It considers three dimensions, predictive perfor-
mance, plausibility, and consistency, along with novel met-
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rics that instantiate each dimension. Polygon can evaluate
a single model which contains only one set of parameters
fitted from the data, because in practice we usually deploy
a single model into a tutoring system after model selection.
Polygon’s predictive performance and plausibility metrics
can be used to evaluate single models. However, latent vari-
able models can converge to different points with different
initial parameter values due to the non-convexity of the neg-
ative log-likelihood. A better model should be more likely
to converge to points with higher predictive performance
and plausibility, and also give more stable predictions and
inferences. So we also use Polygon to evaluate a student
model fitted from a large number of random initializations.
This provides an examination on the parameter space that
is useful for single model selection or construction. In our
study, we call these final fitted models random restarts. We
mainly focus on evaluating the parameter space from ran-
dom restarts, but also include evaluating a single model.
Each Polygon metric evaluates the trained model(s) of a
skill. To get an overall evaluation across skills, we aggre-
gate by averaging each skill’s individual metric. All metrics
range from 0 to 1, with a higher positive value indicating
higher quality. We focus on the evaluation on Knowledge
Tracing and FAST in this study. We now introduce Polygon
in detail.

3.1 Predictive Performance
Predictive performance has been the previous standard of
evaluating student models. It provides useful validation for
the inference of knowledge, since accurate knowledge esti-
mation should imply accurate prediction of student perfor-
mance. We apply a widely used classification metric for this.

AUC and P-RAUC. We use Area Under the Curve (AUC)
of the Receiver Operating Characteristic (ROC) curve to
evaluate each single model on test set, which gives an over-
all summary of diagnostic accuracy. AUC equals 0.5 for a
random classifier and 1.0 for perfect accuracy. For assessing
multiple random restarts, we compute the average of AUC
values from single models and define it as P-RAUC, where
P- stands for prediction performance, R stands for random
restart, and r indicates the rth random restart:

P-RAUC =
1

R

R∑
r=1

AUCr (1)

3.2 Plausibility
The conceptual idea behind using Knowledge Tracing to
model student knowledge is that knowing a skill generally
leads to correct performance, and conversely, that correct
performance implies that a student knows the relevant skill
[1]. We define plausibility metrics based on this idea.

Guess+Slip<1 (GS) and P-RGS. Several prior studies
have empirically addressed the issue of plausibility, as men-
tioned in Section 2. A recent study [19] has provided a the-
oretical ground that we think can be used to formally define
plausibility. This study used theoretical fixed point analy-
sis to prove that when Guess+Slip>1, the probability that a
student has learned a skill just after a practice, given the stu-
dent’s previous performance, decreases for correct practices
and increases for incorrect practices. In this case, the model
is empirically degenerate [1]. This is different from theoret-
ically degenerate [1] constraining Guess≤0.5 and Slip≤0.5

to be plausible estimations, which we think is somewhat too
strong. For example, it is possible that a student may answer
a problem correctly after receiving strong scaffolding (help),
even though the skill has not yet been learned. As a result,
we propose a metric constructed using the Guess+Slip<1
condition. We use an indicator for Guess+Slip<1 for a single
model and refer to it as GS (Equation 2). For assessing ran-
dom restarts, we compute the average of the GS values from
single models and define it as P-RGS, where P- stands for
plausibility and R stands for random restart (Equation 3):

GSr = 1(Guessr + Slipr < 1) (2)

P-RGS =
1

R

R∑
r=1

GSr (3)

Here, 1 is an indicator function and Guessr and Slipr are the
rth random restart’s fitted probabilities. For FAST, with
the change of feature values, Guess and Slip can change.
We focus on capturing the average behavior of guessing and
slipping across contexts, so we compute Guess and Slip with
only the intercepts in the logistic regression component (note
that other features are activated according to context dur-
ing training). The interpretation of our computation de-
pends on the construction of features. For example, when
using item indicator features, the computation captures the
average values of Guess and Slip of a skill.

Non-decreasing Predicted Probability of Learned (NPL)
and P-RNPL. In addition to the above metric grounded in
a theoretical analysis [19] for Knowledge Tracing, we con-
struct another empirical metric to capture the behavior of a
general latent variable model, since it is not always easy or
feasible to conduct theoretical analysis of complex models.
Our proposed metric captures how likely a model gives a
non-decreasing estimation of knowledge levels with an in-
crease in practice opportunities. This idea is consistent
with constraining the learning rate to be non-negative, as
in [17, 6]. We think that a decreasing predicted probability
of learned is not plausible, based on the interpretation that
such a decrease implies practices that hurt learning. We are
aware that a decreasing knowledge estimate can also be in-
terpreted as a decrease in the model’s belief that a student
might reach a high knowledge level, where the model adjusts
itself when observing a lot of incorrect practices. However,
we focus on the first interpretation, because in real world tu-
toring systems where students are aware of their knowledge
level as provided by the systems, decreasing knowledge esti-
mates with more practices might discourage students from
trying more.

To construct this new metric, we first obtain the estima-
tion of a student reaching leaned state at each tth prac-
tice opportunity given prior 1th to (t − 1)th performance
O1 to Ot−1 on the test set. We denote this probability as

P(Lt=Learned|O1:t−1), and also refer to it as P(L̃t|O) for
simplicity. Then we count the total number of consecutive

pairs with non-decreasing P(L̃t|O) across each skill-student
sequence, and then divide it by the the total number of ob-
servations of the current skill. We define this as NPL as
an indicator of its plausibility for assessing a single model
(Equation 4). For assessing random restarts, we compute
the average of the NPL values obtained from single models,
and define it as P-RNPL, where P- stands for plausibility
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and R stands for random restart (Equation 5):

NPLr =
1

D

S∑
s=1

Ts−1∑
t=1

1[P(L̃rs
t+1|Ors) ≥ P(L̃rs

t |Ors)] (4)

P-RNPL =
1

R

R∑
r=1

NPLr (5)

where 1 is an indicator function, r, s, t indicates random
restarts, students, and practice opportunities, respectively.
Ts is the total number of practices of student s, and D is
the total number of practices of all students of current skill.

3.3 Consistency
Depending on different initial values of parameters, Knowl-
edge Tracing and FAST can converge to points with differ-
ent properties (such as plausibility or prediction of mastery).
We favor a consistent model that has a low variance in prop-
erties across random restarts. Here, we extend the problem
of Identifiability, where only global optimal log likelihood
points are involved, into a more general problem of consis-
tency, where all converged points are examined. The mea-
surement of all converged points might be more operational
in practice since it can be hard to judge whether the algo-
rithm reaches a local or global optimum. For example, it is
not clear how many random restarts are needed. Also, it is
not sure whether converged points with log likelihood very
close to the identified highest one can be treated as global
optima or not.

Consistency of AUC, GS, NPL (C-RAUC, C-RGS, C-
RNPL). Based on the explained importance of the per-
formance metric AUC and the plausibility metrics GS and
NPL, we think that a good model should also present low
variance in these metrics across random restarts. As a result,
we define consistency metrics C-RAUC, C-RGS, C-RNPL
correspondingly by computing the standard deviation1 of
each single model’s metrics across multiple random restart
runs (r) on the test set with some transformation to map
them into [0, 1] interval. Here, C- stands for consistency
and R stands for random restarts. For example, for com-
puting C-RAUC, we use the following formula:

C-RAUC = 1−

√√√√ 1

R

R∑
r=1

(AUCr −AUC)2 (6)

Consistency of the Predicted Probability of Mastery
(C-RPM). Student models are usually used to assess whether
and when students reach mastery, based on which tutoring
systems give adaptive instruction. A model lacking consis-
tency in mastery prediction will lead to varying decision in
instruction, which can have a significant impact on students.
So we also construct a metric to quantify this consistency, in-
spired by previous studies [2, 15, 7]. We use the conventional
definition of Mastery as the probability of Learned reaching
0.95 [4]. We compute P(Lt=Learned|O1:t), the posterior
knowledge estimation of being in the Learned state at tth

practice updated by 1st to tth practice observations O1:t.

1We use uncorrected sample standard deviations to map the
metric to [0, 1]. With a large enough sample size (100 in
our study), the bias of this estimator is small. For a smaller
sample size, the corrected version might be considered.

We also refer to it as P(L̃t|O) for simplicity. We then com-
pute the probability of reaching Mastery as the percentage

of students predicted to ever have P(L̃t|O) ≥ 0.95, which
means achieving a 0.95 posterior knowledge estimation in
a practice sequence for the current skill. We refer to this
probability as P(Mastery) or PM (Equation 7). We then
compute the standard deviation of P(Mastery) across differ-
ent runs, transform it to map to [0, 1] interval, and refer to
it as C-RPM where C- stands for consistency, R stands for
random restarts (Equation 8):

PMr =
1

S

S∑
s=1

1{P(L̃rs
t |Ors) ≥ 0.95, ∃t ∈ [1, Ts]} (7)

C-RPM = 1−

√√√√ 1

R

R∑
r=1

(PMr − PM)2 (8)

where r, s, t indicates random restarts, students, and prac-
tice opportunities respectively. Ts is the total number of
practices of student s of current skill.

Cohesion of the parameter vector space (C-RPV). Fixed
point analysis has been used to show that we need all four
parameters to define the overall behavior of Knowledge Trac-
ing [19] during the prediction phase, when knowledge esti-
mation is updated by prior observations. We use this con-
clusion to construct another consistency metric. To capture
all four parameters, we construct a Euclidian vector based
on the four fitted parameters Init, Learn, Guess, and Slip for
each single model. For FAST, we compute the four param-
eters with only the intercepts in the logistic regression com-
ponents after fitting with features during training. We then
compute the Euclidian distance of each vector to the mean of
the parameter vectors (similar to the cluster cohesion mea-
surement), and then perform a transformation to map this
value to [0, 1] interval. We define it as C-RPV where C-
stands for consistency, R stands for random restarts, and
PV stands for parameter vector:

C-RPV = 1− 1

2R

R∑
r=1

||Vr −V|| (9)

where Vr is the parameter vector of the rth random restart.
Vr=(Initr, Learnr, Guessr, Slipr). V is the mean of the
parameter vectors across the random restarts.

3.4 Metric Selection
Our proposed Polygon framework consists of three dimen-
sions: prediction, plausibility, and consistency, and allows
flexibly designed metrics for each dimension. The metrics
we introduced before are the potential ones to be considered.
We propose a principled way to select metrics to instanti-
ate the framework: selected metrics should cover all three
dimensions while having the smallest pairwise correlation.
To achieve this, we examine the scatterplot and correlation
of each pair of the metrics and conduct a significance test.
Finally, we report our selected metrics in Section 4.3.1.

4. STUDIES AND RESULTS
4.1 Datasets and Features
We conducted experiments on datasets from different tu-
toring systems: Geometry Cognitive Tutor [12], OLI Engi-
neering Statics [18], Java programming tutor [10], and the
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Physics tutoring instance of the BBN learning platform [14].
Table 1 shows descriptive statistics (#observations indicates
the smallest assessable practice units of students).

Geometry, Statics. We obtained these datasets from PSLC
Datashop [13]. The Geometry dataset has data from the
area unit of the Geometry course, which was conducted dur-
ing the 1996-1997 school year. The Statics dataset has data
from multiple schools during Fall 2011. We defined a prob-
lem (item) by concatenating the problem hierarchy, problem
name, and step name. We defined a skill by concatenating
the problem hierarchy and original skills, and treated the
combination of skills as one unique skill if multiple skills are
associated with a problem. For the Statics dataset, we ran-
domly selected 20 skills (from the total of 156) to avoid bias
towards this dataset when we aggregate across datasets. We
further removed 3 skills where there are fewer than 10 obser-
vations in total, resulting in 17 skills. For FAST models, we
constructed binary item indicator features for each problem
with fitted coefficients represent item difficulties. Such mod-
els have been known for their high predictive performance
[11, 8], and we plan to examine other dimensions as well.

Java. The Java dataset was collected from an online Java
programming tutoring system [10] from Fall 2010 to Fall
2014. For each problem, students are asked to give the
value of a variable or the printed output of a Java program
after they have executed the code in their mind, and the
system assesses correctness. The Java programs are instan-
tiated randomly from templates on every attempt. Students
can make multiple attempts until they think they have mas-
tered the skill, or just give up. Problems are grouped by
Java topics (each problem is mapped to a single topic), and
we considered each topic as a skill. We consider each prob-
lem template as a single item. For FAST models, we also
constructed binary item indicator features, adding to the
exploration of the effect of item difficulties.

Physics. The Physics dataset was collected from the BBN
Learning Platform [14], a domain-independent, problem-solving-
based online learning platform. Students can solve problems
without any help, or request a decomposition of the prob-
lem into steps. The steps lead students through a carefully
crafted directed path to help solve the problem. We used
logs collected from 40 users solving 10 problems from the
Electric Circuits units. Each of these problems and steps
are annotated with electric circuits skills (in total 10). In
addition to capturing student actions at the items, the plat-
form logs requests for help, feedback received, and problem
navigation actions. We derived 105 numeric features from
these logs, performed feature selection, and finally used the
top ranked feature for FAST. This allows us to inspect the
effect of help in the Knowledge Tracing framework.

4.2 Experimental Setup
We used Expectation Maximization (EM) for training Knowl-
edge Tracing, and Expectation Maximization with features
for FAST [8]. We uniformly initialized each parameter within
(0, 1) at each run for Knowledge Tracing, and we uniformly
initialized each feature coefficient within (-10, 10) for FAST,
which resulted in original parameters approximately cover-
ing (0, 1). We drew 100 different initial values for each
parameter. We set 500 as the maximum EM iteration, 50 as
the maximum LBFGS iteration and the log likelihood’s rela-

Table 1: Dataset descriptive statistics.

Dataset #observations #skills #students %correct
Geometry 5,055 18 59 75%
Statics 23,390 17 326 77%
Java 43,696 20 328 67%
Physics 10,063 10 40 62%

Table 2: Scatterplot and Kendall rank correlation among
metrics of all skills (65) from Knowledge Tracing. Metrics se-
lected into Polygon are shown in blue. Values shown in blue
indicate a low correlation, and values shown in YellowOr-
ange with asterisks indicate statistical significance (α=0.05).
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tive change within 10−6 as convergence criteria. We trained
each skill independently and used a user-stratified data split:
80% of the students were randomly selected into the training
set, and the remaining students were assigned to the test set.
In this way, models can be generalized to unseen students.

4.3 Results
4.3.1 Metric Selection

In order to obtain a compact instantiation of the Polygon
evaluation framework, we analyze the pairwise correlation
among the proposed metrics on Knowledge Tracing models.
For each skill we compute eight metrics based on 100 random
restarts and analyze the relationship across skills. Table 2
shows that C-RGS, C-RNPL and C-RPV all include signifi-
cant correlations with other metrics. Particularly, the scat-
terplot of P-RGS and C-RGS shows a U-shape; we think
this finding is because the mean and standard deviation
of Bernoulli-distributed variables (GS) have this property.
Finally, we instantiate the Polygon framework with five
metrics in our study: P-RAUC, P-RGS, P-RNPL, C-
RAUC and C-RPM, where they cover three dimensions
and have low, non-significant pairwise correlations.

4.3.2 Evaluation on Multiple Random Restarts
We now present how we use Polygon to evaluate multi-
ple random restart models and single models on Knowledge
Tracing and FAST. Figure 1 shows Polygon evaluation per
dataset aggregated across skills. Overall, FAST mostly have
Polygon areas covering that of Knowledge Tracing. Consid-
ering the variance across skills, FAST has significantly higher
values in all five metrics (α=0.05, p < 0.0001 by Wilcoxon
signed-rank test), suggesting that it might promise not only
higher predictive performance, but also higher plausibility
and consistency. One possibility is that the constructed
features indirectly constrain the optimization algorithm to
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Figure 1: Polygon metrics per dataset comparing Knowledge Tracing and FAST. An asterisk (∗) indicates statistical signifi-
cance under Wilcoxon signed-rank test (α=0.05). FAST’s Polygon area mostly covers that of Knowledge Tracing.
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Figure 2: Polygon metrics per skill comparing Knowledge Tracing and FAST. FAST’s Polygon area mostly covers that of
Knowledge Tracing.

search within regions with both high fitness and plausibil-
ity. However, FAST’s plausibility seems to be less stable, as
compared to other properties, since its improvement varies
across datasets.

We further examine Geometry, Statics and Java datasets
where we use FAST with item difficulty features. As shown
in Figure 1, FAST significantly outperforms Knowledge Trac-
ing in all metrics, except for P-RGS on Statics and P-RNPL
on Java, where FAST still presents positive tendencies. Gen-
erally speaking, using item difficulty features in Knowledge
Tracing not only increases the model’s predictive perfor-
mance, but also its plausibility and consistency. However,
the relative improvement in plausibility varies across datasets.

In the Physics dataset, FAST using problem decomposition
requested features has a higher P-RAUC (significant), P-
RNPL, C-RPM (significant), and C-RAUC, yet it also has
a lower P-RGS, compared with Knowledge Tracing (not sig-
nificant). Noticing that both methods have very low P-
RGS, we suspect that skill definitions may be too coarse-
grained, meaning that latter practices may involve potential
new skills, where students fail more often than in the begin-
ning. Thus, student models fitted from such data might be
prone to estimating high Guess and Slip. FAST may be more
vulnerable to bad skill definitions, since it might seek to fit
the data as the primary goal, given that it has significantly
higher predictive performance. In order to find out more
about these potentially ill-defined skills, we further examine
Polygon for each skill, as shown in Figure 2. This analysis
shows that more than half of the skills in the Physics dataset
have very low P-RGS, and particularly, there are two skills
where FAST and Knowledge Tracing have an obvious gap
on P-RGS (6th and the last one), which should cause Knowl-
edge Tracing to obtain a higher average value over FAST.
We plan to examine whether refinement of the skill defini-
tions will increase plausibility of both methods and FAST’s
relative quality for P-RGS in next steps.
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Figure 3: Evaluation on each skill’s each random restart
on Geometry dataset. Each color-shape corresponds to one
skill. Each point corresponds to one random restart con-
vergence point. Comparing with Knowledge Tracing, FAST
generates more consistent, plausible models.

4.3.3 Drill-down Evaluation of Single Models
Polygon not only evaluates a method from multiple random
restarts, but also contains components that can evaluate a
single model. We use AUC, GS (Guess+Slip<1), and NPL
to analyze each single model’s predictive performance and
plausibility, and also use the component PM (P(Mastery))
to get an intuitional understanding of a single model’s ef-
fect on tutoring. Figure 3 visualizes AUC, Guess+Slip, and
P(Mastery) of each random restart of each skill for Knowl-
edge Tracing and FAST on Geometry dataset. Each color-
shape corresponds to one skill, while each point corresponds
to one random restart convergence point. We can easily
determine different behaviors between Knowledge Tracing
and FAST. FAST generates more consistent solutions than
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Figure 4: Polygon evaluation on a skill (id=154) on Stat-
ics dataset. The multi-model pentagon reveals this skill has
high AUC consistency but low P(Mastey) consistency. The
single-model quadrangle further reveals the contradictory
properties of two random restart single models even they
have very similar AUC.

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
ili

ty
 o

r 
o
b
se

rv
a
ti

o
n

student = A student = B

1 2 3 4 5 6 7 8 9

practice opportunity

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
ili

ty
 o

r 
o
b
se

rv
a
ti

o
n

1 2 3 4 5 6 7 8 9

practice opportunity

observation random restart 1 random restart2

ty
p
e
 =

 P
(L

t =
Le

a
rn

e
d
|O

1
:t−

1 )
ty

p
e
 =

 P
(O

t =
C

o
rre

ct)

Figure 5: Comparison of two random restart single FAST
models of a skill (id=154) from Statics dataset on two
students. Both models have similar curves of predicted
P(Ot=Correct) but have substantially different curves of
predicted P(Lt=Learned | O1:t−1).

Knowledge Tracing, since there is less spread both horizon-
tally and vertically of the random restart points within the
same skill for all three metrics. FAST also generates more
plausible models than Knowledge Tracing, since most of the
points fall into Guess+Slip<1 region. Note that FAST as-
serts that students are more likely to reach mastery, since
the converged points mostly lie in the higher-value region.

However, does FAST perform well on every skill? If not,
can we use Polygon to effectively identify such skills and
better understand the behavior? Based on previous skill-
specific polygon evaluations (Figure 2), we identify one skill
(3rd polygon on the 2nd row) on the Statics dataset, where
Knowledge Tracing has better P-RGS than FAST. In Fig-
ure 4 the left-hand figure shows that this skill has a very
high consistency of predictive performance (C-RAUC), yet
a very low consistency of PM (C-RPM) across 100 random
restarts. We further pick two of the random restarts and
compute the polygon metrics for single models, as shown in
Figure 4 right-hand single-model quadrangle. The quadran-
gle reveals that these two random restarts have almost iden-
tical AUC, yet have contradictory assertions about learning
and mastery. In order to better understand the behavior, we

Table 3: Kendall rank correlation among single model AUC,
GS, NPL and log likelihood (LL) on training set for the same
skill across 100 random restarts on Knowledge Tracing. We
report the number of skills and in the bracket the average of
the correlation values across skills under each positive (+)
or negative (-) correlation relation (zero correlation ignored)
among all skills (65).

AUC GS NPL
+ – + – + –

AUC 41(0.6) 23(-0.6) 35(0.7) 30(-0.5)
LL 46(0.5) 19(-0.4) 34(0.5) 30(-0.5) 30(0.4) 35(-0.5)

pick two students from each one of these random restarts,
and plot the predicted correctness curve and knowledge level
curve (conditioned on prior observations). Figure 5 shows
a severe problem in comparing these two random restarts:
they have very similar predicted correctness, yet present fun-
damentally different predicted knowledge levels. We think
that this problem extends the identifiability problem, in the
sense that similar predicted correctness curves though not
identical can be problematic if the predicted knowledge level
curves differ greatly. Also, we observe the empirical degen-
eracy of random restart 1: with more incorrect practices,
the predicted probability of Learned increases. This analy-
sis showcases the deficiency of using only predictive perfor-
mance to evaluate student models, and the effectiveness of
Polygon metrics in identifying hidden problems.

4.3.4 Implications for Single Model Selection
We further examine the deficiency of using prediction perfor-
mance or fitness metrics to select single models. We compute
the Kendall rank correlation between AUC and the plausi-
bility metrics for each run of each skill of Knowledge Tracing.
Table 3 shows the deficiency of using only AUC to select the
best random restart. There are more than one-third of skills
that show a negative correlation between predictive perfor-
mance and plausibility across different runs, and the mag-
nitude of the negative correlation on average is not small.
What about choosing the model with the maximum likeli-
hood (LL) on the training set? Table 3 also shows the corre-
lation between LL, AUC, and the plausibility metrics across
different random restarts. Overall, about 71% (46/65) of
the time, choosing the maximum LL on the training set can
lead to a higher predictive performance in the test set, yet
we have no more than 46% (30/65) of the time to get a more
plausible model. These findings show that LL fails to offer
a better choice than AUC. We think that a practical gener-
alizable way to obtain a latent variable student model with
both high predictive performance and plausibility remains
to be explored, and Polygon provides important insights.

5. CONCLUSIONS
In this paper, we propose a general unified evaluation frame-
work (that we call Polygon) to evaluate student models with
latent knowledge estimates. Prior studies have presented dif-
ferent properties of the estimated parameters of Knowledge
Tracing, yet there are no unified, quantitative evaluations for
general student models. Our primary contribution lies in the
quantitative unification of three aspects for general latent
variable student models: predictive performance, plausibil-
ity, and consistency. We propose novel metrics and present a
principled way to select proper metrics. Our defined dimen-
sions extend the definitions of previously defined Identifia-
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bility and Model Degeneracy, which allows us to understand
such problems more practically and more generally. A sec-
ondary contribution is that we show that a recent model
with proper features, known as FAST, generally provides
higher predictive models with higher plausibility and consis-
tency than Knowledge Tracing. This suggests that proper
features might help the optimization algorithm to constrain
the search towards more plausible, more predictive regions.

There are several areas in which we can further extend our
study. First, a single metric or perspective considering the
multiple facets introduced in our analysis can further im-
prove the accessibility of the evaluation. Also, each single
metric can be further improved. For example, we can in-
vestigate the proper number of random restarts. However,
Polygon’s current individual metrics already provide insights
for training student models. For example, incorporating the
plausibility metric as a penalty into the optimization ob-
jective function can guide the algorithm to search within
the high plausibility region. Second, external measurements
applied in prior studies [4, 2, 6] may help to validate our
framework. However, Polygon primarily serves as domain-
independent internal validity, which is useful when external
resources are not available. Third, the plausibility measure-
ment can be a mixture of both student model and skill model
evaluations. Will each model’s relative quality be different
when we examine well-defined vs. ill-defined skills? Can we
utilize plausibility metrics to inspect skill model qualities?
These are questions that remain unanswered. Fourth, we
need to further understand and improve FAST. Since there
are still cases where FAST generates models with low plau-
sibility or low consistency, is there a principled way to con-
struct features that maximize all three dimensions? Also,
as we have only studied cases where a single feature (be-
sides the intercept) is activated for each observation, will
increasing the number of features change FAST’s behavior?

Our study is still exploratory and serves as a first step to-
wards a more theoretical, deeper understanding of the pa-
rameter estimation of complex latent variable student mod-
els. We hope that our work can open the door to more
studies in the community on building student models that
can yield not only better predictions of student performance
but also more reliable, effective tutoring systems.
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