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ABSTRACT 

The phenomenon of wheel spinning refers to students attempting to 

solve problems on a particular skill, but becoming stuck due to an 

inability to learn the skill. Past research has found that students who 

do not master a skill quickly tend not to master it at all. One 

question is why do students wheel spin? A plausible hypothesis is 

that students become stuck on a skill because they do not 

understand the necessary prerequisite knowledge, and so are unable 

to learn the current skill. We analyzed data from the ASSISTments 

system, and determined the impact of how student performance on 

prerequisite skills influenced ability to learn postrequisite skills. 

We found a strong gradient with respect to knowledge of 

prerequisites: students in the bottom 20% of pre-required 

knowledge exhibited wheel spinning behavior 50% of the time, 

while those in the top 20% of pre-required knowledge exhibited 

wheel spinning behavior only 10% of the time. This information is 

a statistically reliable predictor, and considering it results in a 

modest improvement in our ability to detect wheel spinning 

behaviors: R2 improves from 0.264 to 0.268, and AUC improves 

from 0.884 to 0.888. 
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1. INTRODUCTION 
Many Intelligence Tutoring Systems (ITS) make use of a mastery 

learning framework where students continue practicing a skill until 

they master it.  However, some students are unable to achieve 

mastery despite having numerous opportunities to practice the skill.  

As a result, these students are stuck in the mastery learning cycle 

of the ITS and are given additional problems on a topic they are 

unable to master.  We refer to these students as “wheel spinning” 

on the skill. The term wheel spinning comes from a car that is stuck 

in snow or mud, and despite rapid movement of the wheels, the car 

is going nowhere.  As defined in [1], a student who takes 10 practice 

opportunities without mastering a skill is considered to be wheel 

spinning on this skill. Based on this definition, they also point out 

that about 31% student-skill pairs in CAT and 38% in 

ASSISTments are wheel spinning. This earlier work identified the 

students, but did not provide an explanation for why certain 

students become stuck.  Thus, the next question to address is to 

understand why students wheel spin in order to provide effective 

remediation to those students. 

Beck and Gong [1] developed a model, consisting of 8 features, to 

predict which students will wheel spin on a skill.  They found that 

there is a relationship between wheel spinning and gaming the 

system [12].  Beck and Rodrigo [2] constructed a causal model 

(using non-Western students) that situated wheel spinning in the 

face of affective factors. They found that wheel spinning and 

gaming were strongly related.  This work also presented a path 

model that found gaming was not causal of wheel spinning, but 

rather, wheel spinning was related to a lack of prior knowledge, 

which in turn led to gaming.  A more concrete wheel spinning 

model is developed in [3], in which three aspects of features are 

considered: student in-tutor performance, the seriousness of the 

learner, and general factors. However, these models do not provide 

actionable results for how to make a student less likely to wheel 

spin on a skill, or how to get an already wheel spinning student 

unstuck.   

A natural question is why are some students able to learn a skill and 

achieve mastery, while other students fail to do so?  One plausible 

hypothesis of what makes wheel-spinning students different from 

their peers is a difference in ability to learn the skill.  Students 

certainly differ in cognitive abilities, but addressing such would be 

beyond the scope of most interventions ITS developers can develop.  

Another plausible difference in ability to learn the skill is due to 

differences in student preparation.  For example, if students do not 

understand the concept of equivalent fractions, they will have great 

difficulty mastering the later skill of addition of fractions, which 

requires them to solve problems such as 1/3 + 1/4. 

We define a skill S’s prerequisite skills as those skills necessary to 

be mastered before studying skill S. This prerequisite structure has 

been used to improve different student models in many research 

works. For example, Carmona et al. [4] add a new prerequisite layer 

into student model based on Bayesian Networks. Their experiments 

suggest that the prerequisite relationships can improve the model’s 

efficiency in diagnosing students. Botelho et al. use prerequisite 

structure to estimate students’ initial knowledge for subsequent 

skills [5]. 

Therefore, in this paper, we incorporate the prerequisite structure 

into wheel spinning model, in order to check if prerequisite 

performance has impact in wheel spinning of post-skills. Although 

prior research has proposed automatic algorithms of adapting 

prerequisite structures [6] [7] [8], we instead use a prerequisite 

structure developed by a domain expert.   

As an overview, we abstract students’ prerequisite performance as 

a feature, and then add this feature into the wheel-spinning model 

[1]. Our main points include: 1) determine if there is connection 
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between the prerequisite performance and the wheel spinning of 

post-skill; 2) explore how prerequisite factor would affect wheel 

spinning model; 3) compare the prerequisite factor with another 

possible effect that could cause wheel spinning – students’ general 

learning ability.  The rest paper is organized as following: Section 

2 describes the wheel-spinning model; Section 3 introduces our 

method of how to represent prerequisite performance; results are 

shown in Section 4, and further discussion is in Section 5; 

conclusion and future works are made in Section 6. 

2. WHEEL SPINNING MODEL 
The wheel spinning model used in this work is mainly derived from 

the one in [1], but there are two differences between them, we will 

explain later. This model is fitted using logistic regression 

algorithm in SPSS on the following features: 

a) The number of prior correct responses by the student on this skill. 

This feature is proved useful in the Performance Factors 

Analysis model (PFA) [9]. 

b) The number of problems in a row correctly responded by the on 

the skill prior to the current problem. Since for this paper we are 

operationalizing mastery as 3 correct responses in a row1, the 

number of consecutive correct responses is an important factor.  

The value of this feature is from 0 to 2. 

c) The exponential mean Z-score of response times on this skill. 

The response time for each item is transferred into a Z-score, 

and then exponential mean is calculated for each student by: γ ∗
prior_average + (1 − γ) ∗ new_observation,  with γ = 0.7 

found to work well in practice in prior research, and so we have 

retained it here. 

d) The exponential mean count of rapid guessing. This measures 

how often the student was rapidly guessing. 

e) The exponential mean count of rapid response. This measures 

how often the student took a rapid response. This feature as well 

as the feature (d) reflects how serious the student is learning the 

skill through the tutoring system. Similar features related with 

“gaming” the system were used in gaming detectors as in [10] 

[11] [12].  

f) Count of bottom-out hint. The number of times the student 

reached a bottom-out hint on this skill prior to the current 

problem. 

g) The exponential mean count of 3 consecutive bottom-out-hints. 

This measures how often the student reached bottom out hints 

on 3 consecutive problems. 

h) Skill identification. 

i) Prior response count. 

As aforementioned, the model in our experiments is different from 

the Beck and Gong’s model [1] in two places: one is that we use 

one more feature in the model, the feature b) above; the other is that 

in some experiments, we treat the last feature – prior response count 

– as a covariate, not a factor like in their model. We found this 

parameter’s affect was approximately linear, and thus treating it as 

a covariate made more sense.  We call the model based on these 9 

features the baseline model, and compare it with a model that 

includes the prerequisite performance. 

                                                                 
1 We use this definition for consistency with prior work, and 

for ease of application across systems.  This mastery 

3. METHOD 

3.1 Computing Students’ Performance on 

Skills 
In this paper, our goal is to find the influence of students’ 

prerequisite performance on wheel spinning. So the first step is to 

choose which measure to represent students’ performance on each 

skill. In this work, we regard a student’s percentage of correct 

responses to questions involving a skill to be his performance on 

that skill.  

However, a student could answer correctly, by chance, even though 

this student does not understand the skill at all.  Similarly, a student 

could give the wrong answer through a careless mistake, as in the 

guess and slip parameters in the Knowledge Tracing model [13]. 

These two cases will deviate the student’s performance from 

his/her “true understanding” on the skill, especially if the student 

has very few practices. To deal with these cases, we balance the 

“accidental performance” with student’s overall performance on all 

skill. The formula for calculating a student’s performance on a skill 

𝑖 is: 

Pi =
1

2x
∗ R̅ ∗ Si + (1 −

1

2x) ∗ Ci 

 x: The number of practices on this skill; 

 Si: The percent correctness of skill i, Si =
#correct practices

#overall practices
 (over 

all students). This also reflects the hardness of skill Si. 

 Ci : The student’s percent correctness on skill i , Ci =
#correct practices

#overall practices
 (over the student st1). 

 Ri =
Ci

Si
: This represents how well the student st1 does on skill i 

comparing with the other students. 

 R̅ =
∑ Ri

m
i=1

m
: m is the number of the student’s started skills. 

Table 1. A small sample of students’ practices. 

Student Skill Problem Correct? 

st1 s1 p1 1 

st1 s1 p2 0 

st1 s2 p3 1 

st1 s3 p4 0 

st2 s1 p1 1 

st2 s1 p2 1 

st2 s3 p5 1 

 

Table 2. Calculated skills’ hardness and students’ 

performance according to the data in Table 1. 

Skill Correctness 

Student 

performance 

Normalized 

performance 

st1 st2 st1 st2 

s1 0.75 0.48 1.06 0.45 1 

s2 1.0 0.78 1.67 0.47 1 

s3 0.5 0.28 0.92 0.3 1 

 

criterion is fairly weak, and presumably underestimates the 

amount of wheel spinning. 
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Notice in the formula, the more practices on a skill, the more weight 

is assigned to the performance on this skill. Take the data in Table 

1 as an example. There are in total 4 trials for skill s1, of which 3 

are answered correctly, so its correctness is 0.75.  The correctness 

of the other two skills is: s2, 1.0; s3, 0.5. The student, st1, answered 

two problems of s1, getting one correct and the other incorrect. So 

this student’s correctness of s1 is 0.5, and R1(st1) =
0.5

0.75
= 0.67. 

We can also get that R2(st1) = 1.0, R3(st1) = 0, then R̅(st1) =
0.56. Hence, the student st1’s estimated understanding on the skill 

s1 is: 
1

22 ∗ 0.56 ∗ 0.75 + (1 −
1

22
) ∗ 0.5 = 0.48 . All the 

performance results are shown in Table 2.  Sometimes, a student’s 

adjusted performance is larger than 1, as the student st2’s 

performances on skill s1 and s2. This effect can occur by a student 

doing very well on a very difficult skill.  In this paper, we normalize 

the values to bring them in the range from 0 to 1. 

3.2 Computing Prerequisite Performance 
Once the normalized students’ performances have been computed, 

the next step is to think about how to represent prerequisite 

performances, and then incorporate it into the wheel-spinning 

model.  If a skill has only one pre-required skill, such a 

representation is straightforward:  the student’s adjusted 

performance on that pre-required skill. But what if a skill has 

multiple prerequisites? In our data set, 39 out of 128 skills have 

multiple prerequisites. There are a variety of approaches for 

handling multiple prerequisites.  We chose two different methods 

to compute the prerequisite performance: weakest link and 

weighted by hardness. 

3.2.1 Weakest Link 
This method is based on an assumption that learning a skill requires 

mastery of all its prerequisites. For example, lack knowledge of 

square or square root might not solve the Pythagorean equation. 

Therefore, this method regards the prerequisite skill with the worst 

performance, called weakest link, as the bottom boundary of 

estimation of prerequisite knowledge. 

In this paper, we use the lowest performance value in all 

prerequisite skills as the wheel-spinning model’s input for 

prerequisite performance. For example, in Table 1, if skill s1’s 

prerequisite skills are s2 and s3, then the prerequisite performance 

for student st1 on skill s1 is estimated as 0.3 (normalized).  

3.2.2 Weighted by Hardness 
This method assumes each prerequisite skill has different 

importance in affecting learning a post-skill, and this importance is 

determined by how hard the prerequisite skill is. Thus, we sum up 

a student’s prerequisite performances by assigning a corresponding 

weight to each prerequisite skill, according to the skill hardness. 

Here we define a skill’s hardness to be 1/𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠. Thus, for 

a skill, the representation for its prerequisites is calculated as: 

Pri =
∑ wjPj

n
j=1

∑ wj
n
j=1

 

 n: Number of prerequisites. 

 Pj: A student’s performance on the jth prerequisite. 

 wj =
1

Sj
: The weight assigned into the jth prerequisite. Sjis the 

correctness of this prerequisite. 

Suppose we also have the skill s1’s prerequisites are s2 and s3, then 

using the data from Table 1 the student st1’s prerequisite 

performance on skill s1 is:  

0.47 ∗
1

1
+ 0.3 ∗

1

0.5
1

1
+

1

0.5

= 0.36 

Respectively, the student st2’s prerequisite representation value for 

s1 is 1.  

3.3 Defining General Learning Ability 
Our approach is to construct a variable, which we refer to as 

General Learning Ability (GLA), that encapsulates some of the 

constructs like diligence, home support, raw ability, and so on.  

GLA refers to a student’s latent ability that affects his ability to 

learn new skill, similar in spirit to the unidimensional trait in Item 

Response Theory (IRT) [14]. In IRT, a student’s trait is assumed 

measurable; it is measured through a series of adaptive questions 

given by a tutoring system. 

To simplify our work, we measure student’s general learning ability 

as following steps: 

a) For each student-skill pair, randomly select the other two started 

skills. Here a started skill means the student has practiced at least 

one problem on it; 

b) Compute the performance values for the two skills, as described 

in Section 3.1; 

c) Take the average of those two performance values as the general 

learning ability for this student-skill pair. 

Our intuition in defining GLA in this manner is that if the reason 

for WH’s strong gradient with wheel spinning (Figure 3) is due to 

the knowledge of the prerequisite being important, we would 

expect GLA to perform poorly.  However, if the power of WH 

comes not from estimating a particular aspect of student knowledge, 

but rather than providing a proxy measurement for a student’s 

general ability and willingness to learn, we would expect estimating 

the student’s knowledge of two random skills would work as well.  

We chose to use two random skills since that was the average 

number of prerequisites, and we wanted to avoid issues with one 

measure having lower variability (and hence higher reliability) 

simply by being an aggregate of more skills. One potential 

drawback of our approach is that two skills is a small number, and 

in some cases will certainly provide an over- or under-estimate of 

knowledge for a particular student.  However, since our sample size 

is large enough, 48256 student-skill pairs in total, this approach is 

unlikely to produce skewed results.   

4. RESULTS 

4.1 Data Set 
The data in this work is from ASSISTments. We tracked all 

ASSISTments students when they used the system to practice Math 

problems for almost a full year from September 2010 to July 2011. 

This data set contains 7591 different students, and we randomly 

select 4976 of the students (about 2/3 of students) to form our 

training data set, while the other students comprise the testing data. 

There are 31301 student-skill pairs in the training set and 16955 in 

the testing set. In this work, we consider students who fail to 

achieve mastery within 10 practice opportunities for a skill 

(including indeterminate cases [1]) as wheel spinning, which 

results in 20.6% instances in the training set as wheel spinning and 

19.2% in the testing set. 

Proceedings of the 8th International Conference on Educational Data Mining 131



 

Figure 1. Distribution of number of started prerequisite skills 

in training set and testing set. 

In the training data, there are 177713 problems solved by the 

students, while 97768 problems in testing data. These problems 

cover 128 different skills. In the training and testing set, students 

learn different skills. The maximum number of learned skills by a 

student is 61, and the average is 6.4. As aforementioned, the 

prerequisite-to-post skill structure is defined by domain expert as a 

recommended sequence of topics for instructors. Among the skills 

in our data set, 66 skills have at least one prerequisite. Some skills 

have multiple prerequisites, the max number of prerequisites is 8, 

and the average is 2.4. 

However, it is the teacher’s choice which skills and in which order 

to assign to students. Consequently, the majority of student-skill 

pairs do not have any started prerequisite skills in our data set, as 

shown in Figure 1. Apparently (and understandably), teachers are 

less likely to assign review material than to focus on new topics. 

The maximum number of started prerequisites is 4, and the average 

is only 0.37. Thus, our experiments will run over three different 

data sets: 

 D1: the whole data set, as depicted in Figure 1, which is splitted 

into training and testing set. 

 D2: the prerequisite data set. This data set excludes the skills 

that have no prerequisite skills, as identified by the domain 

expert, from D1. Thus, it is comprised of the points on the x-

axis in Figure 1 corresponding to 0, 1, 2, 3 and 4. It is also 

splitted into training and testing set, and its training set is 

constructed from the training set in D1 by removing the non-

prerequisite skills, while its testing set from testing set in D1 

respectively. 

 D3: the started prerequisite data set, and includes only student-

skill pairs where the student has at least begun one of the 

prerequisites.  This data set excludes the skills that have no 

started prerequisite skills from D2.  Thus, it is comprised of the 

points on the x-axis in Figure 1 corresponding to 1, 2, 3 and 4.  

Similarly, its training (testing) set is generated from training 

(testing) set in D2 by removing non-started-prerequsite skills. 

 

The reason for these three datasets is that they answer different 

research questions.  D1 enables us to investigate the impact of 

prerequisite performance on wheel spinning in an already-existing 

system in a real-world deployment.  That is, how much benefit 

would we see in the current usage context of the tutor.  

Unfortunately, that real-world deployment involves teachers 

assigning no work on most prerequisites, and thus no information 

about student prerequisite knowledge is available to the model.  D2 

enables us to examine where there is at least potential benefit.  D3 

enables us to answer questions about whether a system that had 

fuller information about prerequisite would perform better at 

detecting wheel spinning.  D3 lets us consider possible changes to 

policy where teachers are more willing to assign review work, or 

a system is better able to access past student performance to assess 

prior knowledge.   

 

4.2 Prerequisite Effect on Wheel Spinning 

4.2.1 The Gradient of the Wheel Spinning Ratio  
In order to determine how likely a student will be to wheel spin on 

a skill based on his corresponding prerequisite performance value, 

we focus on the training set of D3.  We separate D3 into 5 bins 

according to the prerequisite performance value, calculated by the 

method weighted by hardness. The wheel spinning ratio in each bin 

is shown in Figure 2, named WS Ratio - WH.  

As observed in the figure, there is a strong gradient with respect to 

the prerequisite performance: students in the bottom 20% of pre-

required knowledge exhibited wheel spinning behavior 50% of the 

time, while those in the top 20% of pre-required knowledge 

exhibited wheel spinning behavior only 10% of the time. This 

expresses strong evidence supporting our hypothesis that student’s 

wheel spinning on post-skill results from poor preparation for 

future learning in terms of prerequisite knowledge [15]. 

 

Figure 2. Wheel spinning ratio according with respect to 

prerequisite knowledge and general learning ability on D3. 

 

4.2.2 Changes in the Model 
To test the impact of prerequisite features, we integrated them into 

the wheel-spinning model described previously.  We compare the 

effects of different factors in the wheel spinning model, Weakest 

Link (WL), Weighted by Hardness (WH), and General Learning 

Ability (GLA).  Table 3 shows the results of training each model 

on the training test, and evaluating it on the test set.  

In this experiment, we use the Cox and Snell R square [15] and 

AUC (area under curve) to measure model fit. As we can see, the 

model does not appreciably change in the data set D1, due to the 

fact that the part of the data containing started prerequisite skills is 

such a small component of the data.  In D2 and D3, the model is 

improved slightly by integrating the prerequisite feature, WH or 

WL. This result supports that prerequisite performance is useful in 

determining students’ wheel spinning status in postrequisite-skills. 

We can also notice that the model with GLA has the similar results 

with the ones with WH and WL. 

Futhermore, to comare the difference between models, a paired t-

test is applied on the results at the student’s level of each pair of 

models, as shown in Table 4. The result shows that adding a 
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prerequisite factor – WH or WL – into the baseline model makes it 

performing significantly differently in all data sets, D1, D2, and D3. 

On the other hand, the model “Baseline+WH” and “Baseline+WL” 

have the similar results in those three data sets, which also implies 

these two prerequisite features have similar effect in the wheel 

spinning model. More interesting, the p-values indicate that the 

model with GLA is significantly different from the model with WH 

(or WL respectively) in D1 and D3, but not in D2, and significantly 

different from the Baseline model in D2, but not in D1 and D3.  

Table 3. Measurements of different models. 

Model 
R Square AUC 

D1 D2 D3 D1 D2 D3 

Baseline 0.285 0.301 0.264 0.879 0.888 0.884 

Baseline 

+WL 
0.285 0.302 0.268 0.879 0.889 0.887 

Baseline 

+WH 
0.285 0.302 0.268 0.879 0.889 0.888 

Baseline 

+GLA 
0.291 0.306 0.268 0.883 0.891 0.887 

 

Table 4. P-values of paired t-test. In each data set (D1, D2, and 

D3), we first compute the RMSE for each model predicting over 

each student. And then the t-test is applied on the RMSE results 

at the student’s level for each pair of models. The p-values in 

this table are shown in the order (D1, D2, D3). 

 Baseline Baseline+WL Baseline+WH 

Baseline 

+WL 

<0.01,<0.01, 

<0.01 
  

Baseline 

+WH 

<0.01,<0.01, 

<0.01 
0.62, 0.1, 0.27  

Baseline 

+GLA 

<0.01,<0.01, 

0.21 

<0.01,0.29, 

<0.01 

<0.01,0.3, 

<0.01 

 

4.2.3 Impact of Prerequisite Effect on the Predictive 

Model 
We now move to determining the impact of the prerequisite feature 

on the predictive model. In our intuition, the prerequisite factor 

might have strong effect in predicting wheel spinning when a 

student just starts learning a post-skill, and the effect weakens with 

time as the student solves problems on the postrequisite skill   

In the logistic regression algorithm, researchers typically use the 

odds ratio, exponential the coefficient, to represent effect of the 

corresponding feature [15]. Then the coefficient could be also used 

to represent the effect on the model. Therefore, in this work, we use 

the coefficient of prerequisite feature to reflect its effect in 

predicting students’ wheel spinning on post-skill. 

In this experiment, we group the D3 of training set by amount of 

practice on the skill, and construct a wheel spinning model for each 

group. The coefficients of prerequisite feature (for the WH model) 

in the corresponding models are shown in Figure 3. As we can see, 

the coefficient representing the impact of prerequisite knowledge 

has the highest value at the beginning, and it decreases in influence 

as students obtain more practice on the skill.  This result support 

our intuition that the prerequisite factor is a good predictor for 

wheel spinning only at the beginning stage of learning post-skill.  

Thus, prerequisite knowledge is useful for overcoming the cold 

start problem in student modeling.  When a student first starts 

working on a skill, his performance on that skill provides little basis 

with whether to classify him as likely to wheel spin or not.  In this 

situation, knowing how he performed on the prerequisite skills 

provides some information in his ability to master the current 

material.  As the system observes more and more performances on 

the skill, those performance provide a much more pertinent source 

of information about the student’s likely trajectory, and the relative 

importance of prerequisite skills diminishes.   

The decrease in in predictive performance for the WH coefficient 

is monotonic and roughly linear. From a standpoint of statistical 

significance, the WH coefficient is reliably different than 0 for 

practice opportunities 1 through 7 (p=0.026 at the 7th opportunity).  

At the 8th opportunity, the impact of the WH coefficient has p=0.51.   

 

Figure 3. The changes of coefficient with respect to number of 

practice opportunities on D3. 

4.3 Understanding What Prerequisite 

Performance Really Represents 
The performance of the WH feature raises an interesting question:  

to what does it owe its predictive power.  Although we refer to this 

feature as representing student’s prerequisite knowledge, it 

captures much more than just knowledge.  For example, if one 

student demonstrates strong performance on prerequisite skills and 

the other does not, those students probably differ in many 

dimensions beyond knowledge of the skill:  diligence in doing math 

homework, support at home, raw ability at learning new concepts, 

and perseverance when stuck.  Wrapping this bundle of constructs 

together and calling it “prerequisite knowledge” certainly 

simplifies discussion, but does a disservice to accuracy.  Therefore, 

we perform a baseline experiment to investigate what prerequisite 

knowledge represents.   

4.3.1 Compare GLA with WH 
Since the effects of two prerequisite features, WL and WH, are 

pretty much the same in the wheel spinning model. Therefore, we 

will compare only the WH with the GLA. These two features are 

compared though three different experiments. 

The first experiment is to construct wheel spinning ratio gradient 

for GLA. As we can see in Figure 2, there is the same broad trend 

for both GLA and WH.  For both measures, students with lower 

general learning ability are more likely to be wheel spinning, which 

is in accord with our common sense. By comparing the two wheel 

spinning ratio gradients, we notice that the ratio is the same when 

the WH and GLA values are high; that is, if a student’s performance 
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is relative high (> 0.6) for WH and GLA, then there is a similar 

chance the student will wheel spin.  However, in the lower range of 

0 to 0.6, students are more likely to be wheel spinning according to 

WH value than the students having the same GLA value. This result 

suggests that prerequisite factor has stronger correlation with wheel 

spinning than general learning ability, although general learning 

ability has strong overlap. 

The second experiment is to add the GLA into wheel spinning 

model and compare the model measurements. According to the 

results in Table 3, adding the GLA into the baseline model makes 

more improvement than adding the WH on the data set D1 and D2. 

This is because the student-skill pairs with pre-required knowledge 

are very rare in those data sets, while every student-skill pair is 

assigned with a computed GLA value based on that student’s 

performance on a pair of random skills. The model with GLA and 

the model with WH on the data set D3 have nearly identical 

performance. 

The third experiment is to compare the effect in the learning 

procedure. As seen in Figure 3, the GLA coefficient also decreases 

with respect to the number of practice. But in the first 5 practices, 

the slope of GLA coefficient is more moderate than the slope of 

WH coefficient, which defends the statement that the prerequisite 

factor is useful in predicting wheel spinning at early learning stage. 

By examine the GLA coefficient Wald statistic p-value, it is also 

statistically reliable (p<0.05) before the 7th practice. 

5. DISCUSSION AND FUTURE WORK 
It should be noticed that even though we found that prerequisite 

knowledge is related to wheel spinning on post-skills, the general 

learning ability also has the similar relation.  Therefore, it is hard 

to identify which factor has a stronger connection with wheel 

spinning in this data set. This is because of two possible reasons: 

improper prerequisite structure and indirect prerequisite-post 

relation. 

5.1 Prerequisite Structure 
As aforementioned, the prerequisite structure used in this work is 

defined by domain experts. Through this structure, the experts 

suggest a general curriculum over all grades, not specified in a 

single year or a single class.  It is certainly possible that our 

structure is in error either by missing some links and incorrectly 

creating others.  Such errors would impact the results.   

Moreover, in the method of computing prerequisite performance 

for a post-skill, we assume that the prerequisite skill with the worst 

performance (or the hardest prerequisite skill) has the strongest 

influence in learning post-skill. However, this assumption might be 

inappropriate here. Botelho [5] et al. also illustrate in their 

experiments that the prerequisite relation in some post-skills are not 

as stable as expected by domain experts. 

Therefore, there are two possible ways of improving our 

experiments. The first one is to construct a prerequisite structure 

specifically for the data. Previous works have been focused on this 

area. For example, Vuong et al. [8] introduce a method for finding 

prerequisite structure within a curriculum. Their method calculates 

the overall graduation rate for each unit, and regards Unit A as 

prerequisite knowledge for Unit B if the experience in Unit A 

promotes graduation rate in Unit B. 

The other possible way is to measure the correlation between each 

prerequisite skill and a post-skill, and then we can obtain which 

prerequisite skill is most effective in affecting learning post-skill. 

Vuong et al. also distinguish the prerequisite relationship between 

significant and non-significant in their work [8]. 

5.2 Prerequisite-post Relation 
Obviously, students’ general learning ability influences their 

performance in both prerequisites and post-skills. Therefore, one 

might argue that there is no direct causal prerequisite-post 

relationship. The student who is wheel spun on learning post-skill 

as well as lack of pre-required knowledge is mainly because he/she 

has weak learning ability, as shown in Figure 4.  In this view, GLA 

is the primary driver of both prerequisite and postrequisite 

performance. 

According to this argument, a consequent case would be: a student 

who is wheel spun on a skill, he/she will be wheel spun on every 

skill, due to the weak learning ability. However, in our data set, the 

wheel spinning ratio of the students who have at least one wheel 

spinning case is about 23%. Thus, the GLA is an effective factor in 

wheel spinning, but not a unique or crucial one.  Another drawback 

of this model is that, for low levels of performance, prerequisite 

knowledge is more strongly related to wheel spinning than GLA.  

Therefore, even if GLA is the primary driver, there is apparently 

some impact of prerequisite knowledge on postrequisite 

performance, represented by the dotted line in Figure 4. 

 

 

Figure 4. A structure to explain indirect prerequisite-post 

relationship.  

In order to validate the structure in Figure 4, a subtler model should 

be constructed, in which students’ GLA is finely measured. A 

proper way is to utilize the IRT model to estimate a student’s trait; 

this trait is regarded as the GLA value. And then it is used in 

predicting if the student will be wheel spinning or not. Meanwhile 

this trait is updated for each item practiced or for each skill learned. 

The similar work is in [16], the authors integrate temporal IRT into 

Knowledge Tracing model, in order to track students’ knowledge 

stage and predict next problem correctness. 

6. CONTRIBUTIONS AND CONCLUSION  
This work makes two contributions.  First, it examines the 

relationship between prerequisite performance and wheel spinning.  

One plausible hypothesis for why some students are stuck in the 

mastery learning cycle is due to inadequate preparation in the 

building block skills.  We found such an association, with students 

who performed less well on the prerequisite skills being more likely 

to wheel spin.  This work represents an advance over what is known 

about wheel spinning [1][2].   

The second contribution of this work is unpacking what is meant 

by knowledge of prerequisite skills, and discovering that it is not 

always related to relevant knowledge.  Specifically, by showing 

that two random skills work approximately as well as prerequisite 

performance, we show that, for this study, the impact is largely due 

to general properties of the student than the student’s knowledge 

about particular skills.  This reasoning is more than a semantic 

game, as it directly impacts the conclusions we can draw from our 

data.   

Given just the WH line in Figure 2, a reasonable interpretation is 

that we can reduce wheel spinning by increasing student 

GLA 

Prerequisite 

Post 
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prerequisite knowledge, and we could imagine interventions 

designed to target such.  Given the additional context of the results 

for GLA, we realize that most of the effect attributed to prior 

knowledge is really just how well the student learns math in general.  

Unfortunately, interventions to target diligence, grit, math ability, 

and home support are outside the scope of plausible interventions 

to deliver with an ITS.  However, the difference in the gradients of 

the two lines suggests there is some benefit from improving student 

knowledge to at least a moderate level to reduce wheel spinning.  

This analysis also raises the question of how much work reporting 

effects related to student prior knowledge is really talking about 

some other construct than knowledge.  Unless the difference in 

knowledge is caused by a randomized manipulation, differences in 

knowledge are a proxy for a collection of variables.  Hopefully this 

work will spur EDM researchers to more carefully investigate the 

meaning of the constructs they are reporting.   

In conclusion, this paper investigates the effect of prerequisite 

performance on wheel spinning and finds that they are related.  The 

addition of prerequisite or GLA features provides a small 

enhancement in predictive accuracy to our wheel spinning model, 

improving R2, on skills for which we have prerequisite data, from 

0.264 to 0.268, and AUC from 0.884 to 0.888.  The baseline model 

results are quite strong for ITS research, so third-decimal 

improvement in both metrics is fairly good.   

This work also found that prerequisite performance and GLA are 

both effective for overcoming the cold start problem in student 

modeling.  When students begin working on a skill, the tutor has 

little knowledge of the student’s capabilities on that skill.  We 

found that the new factors in our model had the greatest impact 

when students were first starting to work with a skill, and diminish 

in importance as we acquire additional data about his knowledge of 

the skill.   
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