
Using Students’ Programming Behavior to Predict
Success in an Introductory Mathematics Course

Arto Vihavainen, Matti Luukkainen, Jaakko Kurhila
University of Helsinki

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

Fi-00014 University of Helsinki
{ avihavai, mluukkai, kurhila }@cs.helsinki.fi

ABSTRACT
Computer science students starting their studies at our uni-
versity often fail their first mandatory mathematics course,
as they are not required to have a strong background in
mathematics. Failing can also be partly explained by the
need to adjust to a new environment and new working prac-
tices. Here, we are looking for indicators in students’ work-
ing practices that could be used to point out students that
are at risk of failing some of their courses, and could bene-
fit from an intervention. We present initial results on how
freshman students’ programming behavior in an introduc-
tory programming course can be used to predict their suc-
cess in a concurrently organized introductory mathematics
course. A plugin in students’ programming environment
gathers snapshots (time, code changes) from students actual
programming process. Gathered snapshots are transformed
to data items that contain features indicating e.g. deadline-
driven mentality or eagerness. Our results using Bayesian
networks indicate that we can identify students with a high
likelihood of failing their mathematics course already at a
very early phase of their studies using only data that repre-
sents their programming behavior.

Keywords
code snapshots, programming behavior, first-year challenges

1. INTRODUCTION
Students face a number of challenges during the first term
of their studies at a higher education institution [4]. They
need to find a place within a new community, and adjust
their learning strategies and styles to fit the requirements
of their chosen study. The multitude of challenges is often
unforeseen and surprising for the students, and many end
up failing some of their first courses. However, if a student
has good study habits, she is more likely to succeed in her
studies [12].

Computer science (CS) students typically start their studies
with introductory programming courses and mathematics.
Although mathematics is typically a minor subject, it is fre-
quently considered as the basis of CS. Especially algorithms-
related courses require a fair amount of mathematical ma-
turity. As such, it is important that students fare well in
their mathematics studies.

There are several systems that gather snapshots from stu-
dents’ programming process, e.g. [13, 15]. Currently, the
research that utilizes snapshots has focused on e.g. model-
ing how students solve a specific exercise (see e.g. [11, 8]),
and how e.g. compilation errors and successes can be used
to predict success in a programming course (see e.g. [9, 14]).
However, to our knowledge, there has not been much at-
tention on how the students’ study practices and behavior,
especially their use of time extracted from snapshots, reflect
on their results on current and parallel courses.

In our work, we are investigating students’ programming
process and seeking indicators of bad study habits that could
be used to highlight students at-risk of failing some of their
first term studies. In this article, we describe how we can
identify students that are at risk of failing a 14-week intro-
ductory mathematics course using only their programming
behavior from a parallel introductory programming course.
Our initial results are promising, and with a population of 52
students, we are able to accurately predict the mathematics
course success after only four weeks of programming.

This paper is organized as follows. In section 2, we briefly
describe our educational arrangements as well as the tool
that enables recording snapshots from students’ program-
ming process. Section 3 describes the data and the feature
generation process. Section 4 describes the methodology
used for analysing the data and presents our results, and
Section 5 outlines future work.

2. CONTEXT, PEDAGOGY
AND TOOLS

The academic year at the University of Helsinki is split into
four seven-week teaching periods. Each period starts and
ends simultaneously throughout the University, and each pe-
riod is followed by a one week intermission before the start
of the next period. The last week of each period is usually
devoted to course exams.



The first two periods for CS majors are packed with manda-
tory courses: Introduction to Programming Part I (7 weeks,
period 1), Introduction to Programming Part II (7 weeks,
period 2), Software Modeling (7 weeks, period 2), that are
offered by the Department of CS. In addition, students are
expected to enroll into Introduction to University Mathe-
matics (14 weeks, periods 1 and 2) that is organized by the
Department of Mathematics and Statistics.

Both courses Introduction to University Mathematics and
the Introduction to Programming Part I are organized us-
ing the Extreme Apprenticeship method (XA) [16], which is
a modern interpretation of apprenticeship-based learning [5,
6]. XA values students’ personal effort and intensive inter-
action between the learner and the advisor, and emphasizes
deliberate practice [7] that aims towards mastering the craft.

As a craft can only be mastered by practising it, XA-based
courses contain lots of exercises. For example, during the
first week of their programming course, CS freshmen work
already on tens of programming tasks.

As XA stresses activity to be as genuine as possible, the stu-
dents start working with industry-strength tools from day
one. We use NetBeans, which is an open source IDE (in-
tegrated development environment), bundled with an auto-
mated assessment service called Test My Code (TMC) [15],
which is used to download and submit exercises; moreover,
TMC is used to run tests on the students’ code in order to
verify the correctness of an exercise.

In addition to the assessment capabilities, on student’s per-
mission, TMC gathers data from students’ programming
process. Currently, a snapshot is taken whenever a student
saves her code, compiles the code, or pastes code into the
IDE. Each snapshot contains student id, timestamp, source
code changes and possible configuration modifications.

3. DATA AND FEATURES
During the Fall 2012, we gathered over 48 000 snapshots
from 52 students that participated to both Introduction to
Programming Part I and Introduction to University Math-
ematics. The 52 students include only those that had more
than 100 snapshots, i.e. they had not disabled the snapshot
gathering mechanism at an early part of the course and had
put at least some effort to solving the exercises. Out of the
52 students, 28 passed the mathematics course, and 24 failed
it, while 43 passed the programming course. Although some
students passed the courses later in a separate exam, we
currently only consider their success in the actual course.

Students’ snapshots are aggregated to describe weekly me-
dian, average, minimum, maximum and standard deviation
of their working in the following dimensions:

1. hour of working
2. minutes to deadline
3. minutes between sequential snapshots
4. edit distance between sequential snapshots.

The first two aggregate statistics are generated by analysing
the snapshot time and its distance from the deadline of
the exercise that the student is currently working on. Ag-
gregate statistics three and four are generated by sorting

the snapshots based on their time and comparing the code
changes and snapshot timestamps between sequential snap-
shots. Due to the large number of snapshots and the rela-
tively small amount of code changes between each snapshot,
we calculate the edit distances using an extension of the
Ukkonen’s algorithm by Bergel and Roach [2].

In addition to the above statistics, we generate weekly:

• minutes spent programming

• % of programming done during night (22-07)

• number of compilation errors

• number of style- and programming-related issues.

The number of compilation errors is gathered by compiling
the program code for each snapshot, and gathering statis-
tics out of the code compilation results. For identifying the
style- and programming-related issues (e.g. wrong indenta-
tion, too long methods, copy-paste code, variables shadow-
ing variables, and infinite loops), we utilize Checkstyle [3]
and FindBugs [1].

If a student has not worked on the programming exercises
during a specific week, values are entered as empty values.
In our data, 21 of the students skipped at least one week
of programming, and 9 of them ended up failing the math-
ematics course. We have purposefully left out the number
of exercises each student has completed from the features,
as our focus is on analysing the students’ working behavior
during the course.

3.1 Features
Each of the aggregated value is considered as a feature, and
each week adds over 30 features that represent students’
behavior during the specific week. Let us consider some of
the features in more detail.

Figure 1 displays probability densities1 for the standard de-
viation of snapshot time distances to deadline. Students
that are more likely to fail the mathematics course have
been working on the exercises during a smaller time period,
e.g. during a single “crunch”, while the students that are
more likely to pass the mathematics course have worked on
the exercises during several days.

The same “crunch” effect is visible in Figure 2, which dis-
plays probability densities for the maximum minutes be-
tween snapshots during week 3. Here, the students that
take a larger pause (over 3.5 days) while working on the
exercises are more likely to pass the mathematics course.

Figure 3 displays the amount of programming done during
nights during week 6. The students that did not program
between 22-07 hrs are slightly more likely to fail the math-
ematics course, and in our data, all the students that pro-
grammed more than 70% of their time during night passed
the mathematics course.

1Note that the figures are plotted in R, and the used band-
width for the density function is the default “nrd0”. If a
value is missing, i.e. has a value NA, it is removed from the
dataset prior to plotting.



0 1000 2000 3000 4000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

Minutes to Deadline (Deviation, Week 1)

D
en

si
ty

PASS
FAIL

Figure 1: “Minutes to Deadline (Deviation, Week
1)” displayed using probability densities for groups
that have passed and failed the course Introduction
to University Mathematics.

0 2000 4000 6000 8000 10000 12000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

Minutes Between Snapshots (Maximum, Week 3)

D
en

si
ty

PASS
FAIL

Figure 2: “Minutes Between Snapshots (Maximum,
Week 3)” displayed using probability densities for
groups that have passed and failed the course Intro-
duction to University Mathematics.

4. METHODOLOGY AND RESULTS
We consider identifying the students’ that are likely to suc-
ceed or fail their introductory mathematics course a classifi-
cation problem. The course result (pass/fail) is used as the
class to predict, and each feature vector contains the aggre-
gated values from a student’s snapshots. In total there are

0 20 40 60 80 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Percentage of Programming Done During Night (Week 6)

D
en

si
ty

PASS
FAIL

Figure 3: “Percentage of Programming Done During
Night (Week 6)” displayed using probability densi-
ties for groups that have passed and failed the course
Introduction to University Mathematics.

52 feature vectors with class labels, one for each student.
We utilize a non-parametric Bayesian network tool called
B-Course [10] for both modeling the dependencies between
the features in the data, and for building the classifiers.

Validation is performed using student level leave-one-out
cross-validation, and if a feature value is missing, i.e. a stu-
dent has not programmed during a specific week, B-Course
ignores the value when calculating the class probabilities.

We have built 12 separate classifiers for our data. Half of the
classifiers are built using data from only the students’ behav-
ior, without results from static and dynamic code analysis,
i.e. compilation errors and style- and programming-related
issues, and the other half include static and dynamic code
analysis results. Each of the classifier represents students’
behavior up to a specific week in the programming course.
The features for separate weeks are currently the same; stu-
dents’ weekly behavior is aggregated to feature values.

The following results contain accuracy, precision, recall, and
the weighted harmonic mean of precision and recall (F-mea-
sure). Precision, recall, and F-measure are calculated as-
suming that we are predicting success in the mathematics
course.

Results for the classifiers that did not include code analysis
results are described in Table 1. Already after one week
of programming, we are able to identify students’ that are
likely to fail the mathematics course with an 84.6% accuracy.
After 5 weeks of programming, the accuracy is 98.1%.

Table 2 describes the results where dynamic and static code
analysis results are included in addition to the students’ be-



Week Accuracy Precision Recall F-Measure
1 84.6 % 85.7 % 85.7 % 85.7 %
2 88.5 % 92.3 % 85.7 % 88.9 %
3 92.3 % 92.3 % 92.3 % 92.3 %
4 94.2 % 100 % 89.3 % 94.3 %

5–6 98.1 % 100 % 96.4 % 98.2 %

Table 1: Results for data that includes students’ pro-
gramming behavior, and excludes compilation errors
and style- and programming-related issues.

havior. After a single week of programming, the accuracy is
88.5%, and at the end of fourth week, we are able to identify
the students’ at risk with 100% accuracy.

Week Accuracy Precision Recall F-Measure
1 88.5 % 92.3 % 85.7 % 88.9 %
2 94.2 % 96.3 % 92.9 % 94.5 %
3 96.2 % 96.4 % 96.4 % 96.4 %

4–6 100 % 100 % 100 % 100 %

Table 2: Results for data that includes students’
programming behavior as well as compilation errors
and style- and programming-related issues.

5. DISCUSSION AND FUTURE WORK
With our current dataset, we are able to predict the stu-
dents’ success and failure in a 14-week introductory math-
ematics course already after a few weeks of their studies
based on their programming behavior. Our current data
indicates that computer science freshman that have a ten-
dency to “crunch” their exercises and start working close to
the deadline are at a higher risk of failing their introductory
mathematics course than the students that work during a
longer time interval.

There is a need for intervention at an early part of the at-risk
students’ studies, which would direct the students towards
more successful learning styles. However, we do not know
if there is a direct causality between the working habits,
and cannot tell if our subjects would really perform better
by e.g. simply starting to work on their assignments earlier.
Our current number of samples (52) is relatively small, and
we need more data from future students.

Our current plan is to evaluate the students’ working process
during Fall 2013, and perform intervention(s) to a subset
of the population that our current classifier indicates being
at risk. We are also seeking more descriptive behavioral
indicators from the programming data in addition to our
current features. Overall, we are not only interested in a
single course or a single semester, but the students’ success
in their whole studies.

6. REFERENCES
[1] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler,

J. Penix, and W. Pugh. Using static analysis to find
bugs. Software, IEEE, 25(5):22–29, 2008.

[2] H. Berghel and D. Roach. An extension of Ukkonen’s
enhanced dynamic programming ASM algorithm.
ACM Trans. Inf. Syst., 14(1):94–106, Jan. 1996.

[3] O. Burn. Checkstyle homepage. URL
http://checkstyle.sourceforge.net/, 2001–2012.

[4] M. R. Clark. Negotiating the freshman year:
Challenges and strategies among first-year college
students. Journal of College Student Development,
46(3):296–316, 2005.

[5] A. Collins, J. Brown, and A. Holum. Cognitive
apprenticeship: Making thinking visible. American
Educator, 15(3):6–46, 1991.

[6] A. Collins and J. G. Greeno. Situative view of
learning. In V. G. Aukrust, editor, Learning and
Cognition, pages 64–68. Elsevier Science, 2010.

[7] K. A. Ericsson, R. T. Krampe, and C. Tesch-romer.
The role of deliberate practice in the acquisition of
expert performance. Psychological Review, pages
363–406, 1993.

[8] J. Helminen, P. Ihantola, V. Karavirta, and L. Malmi.
How do students solve parsons programming
problems?: an analysis of interaction traces. In
Proceedings of the 9th annual international conference
on International computing education research, ICER
’12, pages 119–126, New York, NY, USA, 2012. ACM.

[9] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the 2nd
international workshop on Computing education
research, ICER ’06, pages 73–84, New York, NY, USA,
2006. ACM.

[10] P. Myllymäki, T. Silander, H. Tirri, and P. Uronen.
B-course: A web-based tool for bayesian and causal
data analysis. International Journal on Artificial
Intelligence Tools, 11(03):369–387, 2002.

[11] C. Piech, M. Sahami, D. Koller, S. Cooper, and
P. Blikstein. Modeling how students learn to program.
In Proceedings of the 43rd ACM technical symposium
on Computer Science Education, SIGCSE ’12, pages
153–160, New York, NY, USA, 2012. ACM.

[12] S. B. Robbins, K. Lauver, H. Le, D. Davis, R. Langley,
and A. Carlstrom. Do psychosocial and study skill
factors predict college outcomes? a meta-analysis.
Psychological bulletin, 130(2):261–288, 2004.

[13] J. Spacco, D. Hovemeyer, and W. Pugh. An
eclipse-based course project snapshot and submission
system. In Proceedings of the 2004 OOPSLA workshop
on eclipse technology eXchange, eclipse ’04, pages
52–56, New York, NY, USA, 2004. ACM.

[14] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud.
Predicting at-risk novice java programmers through
the analysis of online protocols. In Proceedings of the
7th international workshop on Computing education
research, ICER ’11, pages 85–92, New York, NY, USA,
2011. ACM.

[15] A. Vihavainen, M. Luukkainen, and M. Pärtel. Test
my code: An automatic assessment service for the
extreme apprenticeship method. In 2nd International
Workshop on Evidence-based Technology Enhanced
Learning, pages 109–116. Springer, 2013.

[16] A. Vihavainen, M. Paksula, M. Luukkainen, and
J. Kurhila. Extreme apprenticeship method: key
practices and upward scalability. In Proceedings of the
16th annual joint conference on Innovation and
technology in computer science education, ITiCSE ’11,
pages 273–277, New York, NY, USA, 2011. ACM.


