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ABSTRACT

Much research has been done on affect detection in learn-
ing environments because it has been reported to provide
better interventions to support student learning. However,
students’ actions inside these environments are limited by
the system’s interface and the domain it was designed for. In
this research, we investigated a learning environment wherein
students had full control over their activities and they had to
manage their own goals, tasks and affective states. We iden-
tified features that would describe students’ learning behav-
ior in this kind of environment and used them for building
affect models. Our results showed that although a general
affect model with acceptable performance could be created,
user-specific affect models seemed to perform better.
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1. INTRODUCTION

The current society and workplace is dynamic and requires
people to continuously learn new skills and adapt to what
is needed. In order to prepare students for this kind of en-
vironment, they need to learn how to manage their learning
goals, their time, their motivation and their affective states
in environments wherein they receive little or no support
and they have complete control over their learning.

Self-regulated learners are likely to be capable of adapting to
such environments because they can effectively manage the
different aspects of a learning scenario. One of the most im-
portant yet difficult skills to learn in self-regulation is mon-
itoring one’s cognitive and affective states. Knowledge of
one’s thoughts and affective states helps students evaluate
the current situation and identify if it is better to continue
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with the current activity or change it. When students learn
on their own, it is likely that they will spend time doing non-
learning related activities. These do not always serve as dis-
tractions because they have also been shown to help regulate
emotions [12]. Self-monitoring becomes essential in this case
because students need to identify when and how much time
spent in non-learning related activities is acceptable so that
they can still achieve their learning goals. Self-monitoring
is not easy because it is a complex meta-cognitive activity
requiring much attention and sophisticated reasoning [13].
Learning in complex domains increases cognitive load and
makes self-monitoring even more difficult.

In this research we are moving towards the creation of sys-
tems that can help students self-monitor by automatically
detecting their affective states. It will be helpful for stu-
dents to be informed about their affective states when they
experience high cognitive load so that they can change their
behavior accordingly. Such systems can also suggest activi-
ties to help them learn better (e.g., refer to notes, seek help)
when certain affective states are detected. Another goal of
the research is to use a data collection methodology that
does not disrupt students’ usual learning behavior. The suc-
ceeding sections discuss our methodology, the data we used,
our affect model creation process and our results.

2. RELATED WORK

Many researchers have tried improving existing learning sys-
tems by incorporating affect detection for better feedback.
D’Mello et al. [7] for example developed affect models using
data from students’ interactions with a conversational agent
in the domain of computer literacy. The features they used
for building these models were based on students’ responses,
the correctness of the students’ answers, their progress and
the type of feedback provided by the system. The model
they built to distinguish each affective state from each other
did not perform very well (i.e., Kappa = 0.163), however the
models they built for distinguishing affective states from a
neutral state performed better (i.e., Kappa = 0.207 - 0.390).

Baker et al. [1] also developed affect models for students
using Cognitive Tutor Algebra. They used features that
described students’ actions, the correctness of their actions
and their previous actions. They built affect models which
distinguished one affective state from another (e.g., bored
vs. not bored, frustrated vs. not frustrated) whose resulting
Kappa values ranged from 0.230 to 0.400.



Our work differs from previous research because we built
affect models using data from students who were not limited
to learning in a certain domain, who controlled their own
learning, who did not receive feedback and there was no
information regarding their learning progress.

3. LEARNING BEHAVIOR DATA

In our previous work, we collected data from one male under-
graduate student, one male master’s student and two female
doctoral students who engaged in research activities as part
of their academic requirements [9]. The students were aged
between 17 and 30 years old wherein three of them were
taking Information Science while one doctoral student was
taking Physics. During the data collection period, two of
the students were writing conference papers and two made
power point presentations about their research. Students
had control over how they conducted their learning activities
and did not receive any direct support from their supervisor.
These conditions required all students to manage their own
cognitive and affective states as they learned which satisfied
our target learning scenario.

Data was collected in five separate two-hour learning episodes
from each student over a span of one week. Students freely
decided on the time, location and type of activities they
did but were required to learn in front of a computer that
recorded their learning behavior. All students used a com-
puter in doing their research so the setup was naturalistic
and they did not have to change the ways in which they
usually learned.

Data about the students’ learning behavior was collected
by asking them to annotate their behavior after each learn-
ing episode using a behavior recording and annotation tool
we developed called Sidekick Retrospect [9]. At the begin-
ning of a learning episode, students inputted their learning
goals. The system then began logging the applications they
used, taking screenshots of their desktop and capturing im-
age stills from their webcam with corresponding timestamps.
After a learning episode, students were presented a timeline
which showed the desktop screenshots and image stills de-
pending on the position of their mouse on the timeline. This
helped students recall what happened during the learning
episode so they could annotate it.

Students made annotations by selecting a time range and in-
putting their intentions, activities and affective state. Inten-
tions can either be goal related or non-goal related relative to
the goals set at the beginning of the learning episode. Activ-
ities referred to any activity done while learning which could
either be done on the computer (e.g., using a browser) or out
of the computer (e.g., reading a book). Two sets of affect
labels were used for annotating affective states wherein goal-
related activities were annotated as delighted, engaged, con-
fused, frustrated, bored, surprised or neutral and non-goal
related activities were annotated as delighted, sad, angry,
disgusted, surprised, afraid or neutral. Academic emotions
[4] were used for annotating goal related intentions because
they gave more contextual information about the learning
activity. However, academic emotions might not have cap-
tured other emotions outside of the learning context so Ek-
man’s basic emotions [8] were used to annotate non-goal
related intentions.

Students would inherently recall what happened during a
learning episode when they made annotations so it would
be easier for them to identify the appropriate labels. Go-
ing through the entire learning episode sequentially would
also help them annotate more accurately because they would
see how and why their activities changed as well as its out-
comes. It is possible that students might not annotate the
data correctly for fear of judgment or getting lower scores.
However, in our experiment we made it clear to the students
that their learning behavior would not affect their grades in
any way and assured them that these would not be shown
or discussed with their supervisors.

The students’ annotations were processed and cleaned so
that contiguous annotations had a different intention, ac-
tivity or affective state. Those that were exactly the same
were merged. The resulting data consisted of 1,081 annota-
tions from all students with an average of 54.05 annotations
(N=20; 0=27.18) in each learning episode.

4. FEATURE ENGINEERING

The data consisted of only three features (i.e., timestamp,
intention and activity) and the affective state label for cre-
ating affect models. Models built using these initial features
performed poorly so new features had to be designed.

Although the students worked on different topics and used
different applications, all of them processed and performed
experiments on previously collected data, searched for re-
lated literature and created a report or document about it.
Although students performed many different activities, an-
alyzing the data showed that these activities can be catego-
rized into six general types — information search (e.g., using
a search engine), view information source (e.g., reading a
book, viewing a website), write notes, seek help from peers
(e.g., talking to a friend), knowledge application (e.g., paper
writing, presentation creation, data processing) and off-task
(e.g., playing a game). This was used as a new feature which
we called task. We also added as features the duration of
the task and its position in the learning episode. A task’s
position in the learning episode was expressed as a normal-
ized time value ranging from zero to 100, wherein zero in-
dicated the start of the episode, 50 indicated the middle of
the episode and 100 indicated the end of the episode.

Previous research has shown that the occurrence and dura-
tion of previous cognitive or affective states influenced the
student’s current affective state [2, 9]. However, there is
no study that describes how long their influences last. For
this study, we only considered the effects of cognitive and
affective states in the last five minutes which was based on
the average duration of tasks in our data. Similarly, there
was no study indicating how many elements in a sequence
of previous tasks influenced the current task. However, the
data showed that students performed only a maximum of
five tasks within a five minute interval (i.e., when students
quickly shifted from one task to another). So, we considered
the past five tasks relative to the current task as features.

To express the relationship between the previous and current
tasks, we used task frequency (i.e., the number of times a
certain type of task was performed in the last five minutes),
task duration (i.e., the number of seconds each type of task



Table 1: Affect model performance

| Classifier | Kappa | F-measure | Accuracy |
Naive Bayes 0.345 0.349 | 63.10%
J48 (C4.5) 0.333 0.290 62.57%
JRip 0.326 0.331 61.22%
SVM 0.286 0.351 59.91%
Rep-tree 0.284 0.362 59.06%
Bayesian Network [ 0.181 0.317 39.43%

was performed in the last five minutes), most frequent task
(i-e., the most frequent type of task in the last five minutes)
and dominant task (i.e., the type of task that was performed
for the longest time in the last five minutes).

The new set of 22 features was used with the affect label for
affect modeling.

S. AFFECT MODELING

Rapidminer 5.3 [11] was used in running different machine
learning algorithms to build the affect models. Batch cross-
validation was used for evaluating the models such that all
the data from one student was held out for testing each time.
This was used to test if the resulting model would generalize
over students.

RapidMiner’s genetic algorithm feature selector was used
to identify the most relevant features for the classification
task. The fitness of each feature subset was calculated by
running a given machine learning algorithm on that subset
and then using the resulting model’s batch cross-validated
kappa value. Cohen’s Kappa [3] was used because it consid-
ers misclassifications of multiple class labels which cannot
be handled by other measures like accuracy. Kappa has also
been used frequently in classifying educational data [1, 7].

Table 1 shows the results of the evaluation where the Naive
Bayes model gave the highest kappa value of 0.345 using the
features selected by the feature selector. This indicates that
the model can perform around 34% better than chance.

The feature selector used 12 out of the 22 features for build-
ing the affect models. Three of these features were related
to the student’s current state (i.e., position in the learning
episode, duration and task). Five of the features were related
to the past tasks employed by the student (i.e., task,_1 ...
task,—5). Two of the features were related to the amount of
time spent performing a previous task in the last five minutes
(i-e., information search duration and write notes duration).
Finally, two features were related to the frequency of per-
forming tasks in the last five minutes (i.e., apply knowledge
frequency and off-task frequency).

Just like other research, features related to previous actions
were also found to correspond with the current affective state
[2, 6, 9, 12] and is probably the reason why these were se-
lected. The task feature was probably selected because some
affective states occurred more frequently while performing a
particular task. For example, confusion and engagement
were commonly associated with knowledge application and
viewing information sources most likely because these activ-
ities require utilizing current knowledge and understanding
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Figure 1: Occurrence of affective states over time

Table 2: Kappa values of user-specific affect models
J48 | JRip | Rep-Tree | SVM BN NB
11| 0.675 | 0.665 0.628 | 0.625 | 0.604 | 0.310
21 0.270 | 0.147 0.166 | 0.164 | 0.229 | 0.206
3| 0.498 | 0.490 0.400 | 0.425 | 0.414 | 0.375
4] 0.532 | 0.445 0.484 | 0.529 | 0.300 | 0.256

new information. However, boredom and neutral affective
states were commonly experienced only when viewing in-
formation sources probably because unlike knowledge appli-
cation, some information sources may not have been rele-
vant to the student. Delight was usually experienced when
students performed off-task activities probably because stu-
dents engaged in activities they enjoyed during this period.

Certain affective states were experienced more frequently at
certain positions in the learning episode which might have
caused it to be selected as a feature. Figure 1 shows the total
number of times an affective state was experienced by stu-
dents at certain points of the learning episode. Engagement
was experienced more frequently at the start and at the end
of the session while the occurrence of confusion and delight
increased in the middle of the episode. This is indicative of
the phases of flow wherein a learner starts in an equilibrium
state of understanding, which is challenged by new knowl-
edge usually exhibited by feelings of confusion and is later
assimilated leading back to an equilibrium state [5, 10].

We also investigated the performance of user-specific affect
models by using each student’s data separately. The models
were evaluated with batch cross-validation using the session
number to see if it generalized over learning sessions.

Table 2 shows that the kappa values of the user-specific affect
models were higher compared to the general affect model.
Among all machine learning algorithms, J48 performed best
with a Kappa value of 0.675. The feature selector selected
features similar to those in the general affect model with
subtle differences in the features related to the frequency
and duration of previous tasks. For example, in one stu-
dent’s affect model, the frequency of information searches in



the past five minutes was selected as a feature while the fre-
quency of writing notes in the past five minutes was selected
instead in another student’s model. These are indicative of
students’ affective states being influenced differently by cer-
tain tasks. This also shows that individual differences play a
part in the affective states experienced by a student making
them behave differently in similar contexts.

The features selected in both the general and user-specific
models described the frequency, duration and type of pre-
vious actions performed by the students as well as the stu-
dents’ current learning state. These are contextual informa-
tion about the students’ learning state which seems to be
good predictors of students’ affective states as shown by the
performance of the resulting affect models.

6. CONCLUSION

In this paper, we have presented the development of affect
models that are capable of identifying students’ affective
states. The features used described the context in which
the student learned such as the previous and current tasks
they performed and are currently doing. The novelty of our
work is that the affect models we built could identify affec-
tive states in a learning environment wherein students were
not bound by a particular domain or learning system and
the students had complete control over their activities. Even
though information regarding the students’ progress was un-
available, the performance of the models was still acceptable.
Our results could not directly be compared to previous work
because the affective states predicted by our models were in
the context of a particular task unlike the works of Baker et
al. [1] and D’Mello et al. [7] that predicted affective states
in particular time intervals. However, the approach seems
promising because the performance of the model was almost
as good as the results in these works.

We acknowledge that the general affect model was created
using only a few participants. However, the important ob-
servation we got was that user-specific models had better
results indicating the importance of individual differences in
building affect models. Evaluating the performance of affect
models using data from more students would help confirm
such findings.

There is a need to find features that could increase the per-
formance of these affect models and experiment on different
thresholds (e.g., task frequencies and durations in either less
than or more than five minutes prior to the current task)

Affect models built with our methodology can be used by
other systems for monitoring affective states. Students can
then be made aware of their affect through prompts so they
can adapt their activities accordingly. These systems could
also suggest changes to particular tasks when certain affect
is detected. Enabling systems to help students self-monitor
can help them self-regulate and thus learn better.
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