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ABSTRACT

Normally, when considering a model of learning, one com-
pares the model to some measure of learning that has been
aggregated over students. What happens if one is interested
in individual differences? For instance, different students
may have received different help, or may have behaved dif-
ferently. In that case, one is interested in comparing the
model to the individual learner. In this study, we investi-
gate three models of learning and compare them to student
log data with the goal of seeing which model best describes
individual student learning of a particular skill. The log
data is from students who used the Andes intelligent tutor
system for an entire semester of introductory physics. We
discover that, in this context, the "best fitting model” is not
necessarily the “correct model” in the usual sense.
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1. INTRODUCTION

Most Knowledge Component (KC) [15] based models of learn-
ing are constructed in a similar manner, following Corbett
and Anderson [8]. First, some measure of learning is selected
(e.g. correct/incorrect on first try) for the j-th opportu-
nity for that student to apply a given KC. This measure
of learning is then aggregated over students (e.g. fraction
of students correct) as a function of j. Finally, aggregated
measure is then compared to some model (e.g. Bayesian
Knowledge Tracing) with model parameters chosen to opti-
mize the model’s fit to the data. In principle, given sufficient
student log data, one could uniquely determine which of sev-
eral competing models best matches the data.

One drawback with this approach is that it does not take
into account individual learner differences or the actual be-
haviors of students or tutors as they are learning. Thus, a
number of authors have extended their models to include in-
dividual student proficiency and actual help received by the

student. For instance, in the Cordillera natural language
tutoring system for physics [16], the student may have been
asked what the next step was or were told what the next
stop was; this was used as input for an associated model.
An overview of these models can be found in [7].

If one is primarily interested in the effectiveness of help given
to an individual student or the effectiveness (for learning) of
a particular strategy or behavior of a student, then it may
make sense to fit a model of learning to the log data of each
student individually. Given sufficient student log data, can
we still talk about a particular model fitting the student log
data well? That is the central question of this paper. To
start our investigation, we will compare three different mod-
els of learning using data from students taking introductory
physics and examine whether there is empirical support for
using one model over the others. In fact, using Akaike In-
formation Criteria (AIC), we obtain results that seem to
favor two models over the third, but note that fitting the
models to individual students can make the determination
ambiguous.

1.1 Correct/Incorrect steps

Our stated goal is to determine student learning for an indi-
vidual student as they progress through a course. What ob-
servable quantities should be used to determine student mas-
tery? One possible observable is “correct/incorrect steps,”
whether the student correctly applies a given skill at a par-
ticular problem-solving step without any preceding errors or
hints. There are other observables that may give us clues
on mastery: for instance, how much time a student takes
to complete a step that involves a given skill. However,
other such observables typically need some additional theo-
retical interpretation. Fxempli gratia, What is the relation
between time taken and mastery? Baker, Goldstein, and
Heffernan [3] develop a model of learning based on a Hidden
Markov model approach. They start with a set of 25 addi-
tional observables (including “time to complete a step”) and
construct their model and use correct/incorrect steps to cal-
ibrate the additional observables and determine which are
significant. Naturally, it is desirable to eventually include
various other observables in any determination of student
learning. However, in the present investigation, we will fo-
cus on correct/incorrect steps.

Next, we need to define precisely what we mean by a step. A
student attempts some number of steps when solving a prob-
lem using an intelligent tutor system (ITS). Usually, a step
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Figure 1: Functional form of the three models of
student learning.

is associated with creating/modifying a single user interface
object (writing an equation, drawing a vector, defining a
quantity, et cetera) and is a distinct part of the problem so-
lution (that is, help-giving dialogs are not considered to be
steps). A student may attempt a particular problem-solving
step, delete the object, and later attempt that solution step
again. A step is an opportunity to learn a given Knowledge
Component (KC) [15] if the student must apply that skill to
complete the step.

Andes is a model-tracing tutor [2], which means that the
ITS contains a number of “model solutions” to each problem
and each step of the model solution has one or more KCs
assigned to it. As a student solves a problem, Andes tries
to match each student attempt at a step to a corresponding
model solution step and, if that match is successful, assigns
the corresponding KCs to that step attempt. For some com-
mon errors, Andes has a number of error detectors that infer
what solution step the student was attempting to work on.
In that case, KCs can assigned to that attempt. However,
there are many errors where the associated KCs cannot be
determined. In the log analysis, if a step attempt does not
have any KCs assigned to it, we use the following heuris-
tic to determine the associated KCs: First, we look at any
subsequent attempts associated with the same user inter-
face element and see if they have any KCs associated with
them. If that fails, then we look for the next attempt having
the same type of user interface element (equation, vector, et
cetera) that has some KCs associated with it.

For each KC and student, we select all attempted steps that
involve application of that KC and mark each step as “cor-
rect” if the student completes that step correctly without any
preceding errors or requests for help; otherwise, we mark the
step as “incorrect.” If each incorrect/correct step is marked
with a 0/1, then a single student’s performance on a sin-
gle KC can be expressed as a bit sequence, erxempli gratia
00101011. We will label steps with 5 € {1,...,n}.

2. THREE MODELS OF LEARNING

Ultimately, we are interested in determining when a student
has mastered a particular KC and, by inference, the effec-

tiveness of any help given by the tutor. Thus, a useful model
of learning should have the the following properties:

1. Be compatible with actual student behavior. That is,
its functional form should fit well with student data.
We will explore this question in Section 3.

2. Give the probability that learning has occurred at a
given step.

3. Assuming learning has occurred at a given step, the
model should give a prediction for the associated in-
crease in performance and the rate of errors after learn-

ing.

We will consider three candidate models: the Bayesian Knowl-
edge Tracing (BKT) model, the logistic function, and the
“step model;” see Fig. 1.

The first model is the Bayesian Knowledge Tracing (BKT)
model [8]. The hidden Markov model form of BKT is often
fit to student performance data [4]. One can show that this
model, in functional form, is an exponential function with
three model parameters [13]:

Pekr(j) =1— P(S) — Ae™ %7 . (1)

One central assumption of BKT is that, given that learning
has not already occurred, mastery is equally probable on each
step. This assumption of equal probability does not match
well with our goal of determining empirically the steps where
learning has actually occurred for an individual student, cri-
terion 2. On the other hand, this model does provide the
final error rate P(S) (the initial error rate is ambiguous), so
criterion 3 is partially satisfied.

A number of models of learning based on logistic regres-
sion have been studied [6, 10, 7]. These models involve fit-
ting data for multiple students and multiple KCs and may
involve other observables such as the number of prior suc-
cesses/failures a student has had for a given skill. However,
in this investigation, we are interested in fitting to the cor-
rect/incorrect bit sequence for a single student and a single
KC and a logistic regression model takes on a relatively sim-

ple form
Plo istic (_7) ) .
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which can be written as:
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It is natural to associate L with the moment of learning.
However, the finite slope of Plogistic(j) means that learning
may occur in a range of roughly 1/b steps before and after
L. For Piogistic(j), the gain in performance is always 1 and
the final error rate is always 0. Thus, although this model
makes a prediction for when the skill is learned, criterion 2,
it does not predict a gain in performance, criterion 3.

Plogistic (])

The third model is the “step model” which assumes that

learning occurs all at once; this corresponds to the “eureka
learning” discussed by [3]. It is defined as:
N g, J<L
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where L is the step where the student first shows mastery of
the KC, g is the “guess rate,” the probability that the student
gets a step correct by accident, and s is the “slip rate,” the
chance that the student makes an error after learning the
skill. These are analogous to the guess and slip parameters
of BKT [8]. The associated gain in performance is 1 —g — s
and the error rate after learning is simply s in this model.
Thus, this model satisfies criteria 2 and 3.

3. MODEL SELECTION USING AIC

The BKT and logistic function models are widely used and
we have introduced the step model Pstep(j) as an alternative.
How well do these models match actual student behavior?
Since we will use the step model in subsequent work, it would
be reassuring to know whether it describes the student data
as well (or better than) the other two models. We will use
the Akaike Information Criterion (AIC) for this purpose [1,
5]. AIC is defined as

AIC = —2log (£) + 2K (5)

where £ is the maximized value of the likelihood function
and K is the number of parameters in the model. AIC is an
estimate of the expected relative “distance” between a given
model and the true model (assumed to be complicated) that
actually generated the observed data. It is valid in limit of
many data points, n — oo, with leading corrections of order
1/n.

A related method for choosing between models is the Bayesian
Information Criterion (BIC) introduced by Schwarz [11].
BIC is defined as

AIC = —2log (£) + K log (n) (6)

where n is the number of data points. Burnham & An-
derson [5, Sections 6.3 & 6.4] explain that BIC is more
appropriate in cases where the “true” model that actually
created the data is relatively simple (few parameters). If
the true model is contained in the set of models being con-
sidered, then BIC will correctly identify the true model in
the n — oo limit. For BIC to have this property, the true
model must stay fixed as n increases. The authors argue
that, while BIC may be appropriate in some of the physical
sciences and engineering, in the biological and social sci-
ences, medicine, and other “noisy” sciences, the assumptions
that underlie BIC are generally not met. In particular, as
the sample size increases, it is typical that the underlying
“true” model also becomes more complicated. This is cer-
tainly true in educational datamining: datasets are gener-
ally increased by adding data from new schools, or different
years and one generally expects noticeable variation of stu-
dent behavior from school to school or from year to year.
In such cases, one safely can say that the “true” model is
complicated (because people are complicated) and becomes
more complicated as a dataset is increased in size. Although
most authors quote both AIC and BIC values, there is good
reason to believe that AIC is generally more appropriate for
educational datamining work.

3.1 Method

We examined log data from 12 students taking an inten-
sive introductory physics course at St. Anselm College dur-
ing summer 2011. The course covered the same content as
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Figure 2: Histogram of number of distinct student-
KC sequences in student dataset A having a given
number of steps n.

a normal two-semester introductory course. Log data was
recorded as students solved homework problems while us-
ing the Andes intelligent tutor homework system [17]. 231
hours of log data were recorded. Each student problem-
solving step is assigned one or more KCs using the heuristic
described in Section 1.1. The dataset contains a total of
2017 distinct student-KC sequences covering a total of 245
distinct KCs. We will refer to this dataset as student dataset
A. See Figure 2 for a histogram of the number of student-KC
sequences having a given number of steps.

Most KCs are associated with physics or relevant math skills
while others are associated with Andes conventions or user-
interface actions (such as, notation for defining a variable).
The student-KC sequences with the largest number of steps
are associated with user-interface related skills, since these
skills are exercised throughout the entire course.

One of the most remarkable properties of the distribution
in Fig. 2 is the large number of student-KC sequences con-
taining just a few steps. The presence of many student-KC
sequences with just one or two steps may indicate that the
default cognitive model associated with this tutor system
may be sub-optimal; to date, there has not been any at-
tempt to improve on the cognitive model of Andes with, say,
Learning Factors Analysis [6]. Another contributing factor
is the way that introductory physics is taught in most insti-
tutions, with relatively little repetition of similar problems.
This is quite different than, for instance, a typical middle
school math curriculum where there are a large number of
similar problems in a homework assignment.

3.2 Analysis

Since the goodness of fit criterion, AIC, is valid in the limit of
many steps, we include in this analysis only student-KC se-
quences that contain 10 or more steps, reducing the number
of student-KC sequences to 267, covering 38 distinct KCs.
We determine the correctness of each step (Section 1.1), con-
structing a bit sequence, exempli gratia 001001101, for each
student-KC sequence. This bit sequence is then fit to each
of the three models, Pstep, Plogistic, and Pk by maximiz-
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Figure 3: Scatter plot of Akaike weights for the
three models, Piicp, Plogistic, and PgkT, when fit to
student-KC sequences from an introductory physics
course. The point where all models are equal,
Wstep = Wiogistic = wpkT = 1/3, is marked with the
lower cross. The average of the weights is marked
with the upper cross. The dashed line on the left
represents points where wsep = wpkr. Finally, the
dashed line on the right marks data with bit se-
quences of the form 00---011---1.

ing the associated log likelihood. For Pgistic, and Pk,
the fits were calculated using the Differential Evolution al-
gorithm [12] provided by Mathematica. For Psep, the best
fit, as a function of s and g, can be found analytically; one
can then find the best fit, as a function of L, by conducting
an exhaustive search. Next, we calculate the AIC score for
each fit. Finally, we calculate the Akaike weights, wiogistic,
Wstep, and wpkT for each student-KC sequence [5]. The
weights are normalized so that

1= Wiogistic + Wstep + WBKT - (7)

The Akaike weight represents the relative probability that
a particular model in a given set of models is closest to the
model that has actually generated the data.

A scatter plot of the weights is shown in Fig. 3. If all three
models described the data equally well, then we would ex-
pect points to be scattered evenly about the center point
Wiogistic = Wstep = WBKT = 1/3. Instead, we see the step
model (average weight 0.44) weakly favored over the logistic
model (average weight 0.37) and strongly favored over BKT
(average weight 0.18). Indeed, we find no data points where
Wstep < WBKT, although there is a noticeable accumulation
of points along the line wstep = WBKT-

Note that data in the form of incorrect steps then correct
steps, exempli gratia 00---011---1, is fit perfectly by both

the Pstep and Pogistic models. In this case, since Piogistic has
one fewer parameter than Psiep, it is favored by AIC by a
constant factor and wsiep = eflwlogistic. This case is plotted
as the increasing dashed line in Fig. 3.

Since the student-KC sequences contain an average of about
n = 16 steps, it is surprising that we find that AIC so
strongly discriminates between the models. Perhaps, though,
this is due to some finite n correction: recall that AIC is only
strictly valid in the n — oo limit.

3.3 Random data

To further investigate the observed strong discrimination be-
tween the three models, we constructed an artificial dataset
containing random bit sequences (each step has 50% prob-
ability of being “correct”) of length n € {10, 20, 30, 40, 50},
with 10,000 sequences for each n. This dataset corresponds
to a model of the form

Prandom(j) - 1/2 . (8)

We then repeated our analysis of the three models using
this dataset and AIC as our selection criterion. Note that
all three models, with a suitable choice of parameters, can
be made equal to Prandom itself.

As mentioned earlier, for data that is generated by a sim-
ple model (and Prandom is about as simple as one can get)
and the “true” model is included among the set of models,
BIC is the more appropriate criterion for model selection [5,
Sections 6.3 & 6.4]. However, for our results, the only differ-
ence between AIC and BIC is that BIC favors Piogistic more
strongly over Pstep and Ppkr. Thus, using BIC would shift
the weights so that wiegistic would increase somewhat over
the other two weights. However, in order to maintain con-
sistency with our experimental results, Fig. 3, we used AIC
for the random data as well; see Fig. 4. This use of AIC
versus BIC does not affect our conclusions.

For data generated by Prandom, One expects that all three
models should perform equally well since all three can equal
(with suitable choice of parameters) the known correct model
Prandom- Thus, we would expect a scatter plot of the Akaike
weights to center around wiogistic = Wstep = WBKT = 1/3.
Instead, we find that Psep is still highly favored over the
other two; see Fig. 4. This bias seems to persist as we in-
crease n.

Since we know that AIC (or BIC) is only strictly valid in
the asymptotic limit n — oo, it is useful to see if the large
differences persist as n is increased. If we average over the
10,000 weights and plot the average weight as a function of
n, we find that the differences between the weights persist
in the n — oo limit; see Fig. 5. If we fit the average weights
to a constant plus 1/n; the fits are:

1.50
(Wstep) = 0.58 — 0 (9)
1.2
<wlogistic> = 024 + 7 (10)
0.30
<’u)]3KT> = 017+ T . (11)

This shows that AIC, in the asymptotic limit n — oo, still
favors Psiep over the other two models when used to evaluate
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Figure 4: Akaike weights for the three models, Psiep, Plogisticy and PexT, when fit to randomly generated data.
The point where wstep = Wiogistic = wpkT = 1/3 is marked with a cross. For these datasets, each model should
perform equally well, since, with an appropriate choice of parameters, they all can be made equal to the

model that was used to generate the data.

randomly generated data.

If we repeat this analysis with BIC, we would still find that
the weights converge to a constant value with 1/n leading
errors. The only difference is that the logistic model has a
larger weight than the other two. The differences between
the weights of the three models still persist in the n — oo
limit.

3.4 Conclusions

In conclusion, we obtain some surprising results when we
compare the three models, Pitep, Plogistic, and Pk, using
individual student data. We see that AIC weakly favors
the step model over the logistic model in a fashion that one
might expect. However, in an unexpected fashion, we see
that both are strongly favored over the BKT model. We see
that this effect persists for randomly generated data and is
not due to an insufficient number of opportunities (finite n
effect).

Moreover, for any bit sequence, PsxT never fits the data
better than Pitep. Since both models have three parameters,
this result holds for any maximum likelihood-based criterion,
including both AIC and BIC. We don’t have an analytic
proof for this result, but the numerical evidence (see Fig. 5)
is quite strong. In other words, even if one uses Pgxr (for
some set of model parameters) to generate a bit sequence,
one can always adjust the parameters in Pstep so that it fits
the bit sequence as well as, or better than, Pgkr.

What does this mean? Let us think more carefully about
maximum likelihood. If one uses a model to generate a sin-
gle bit sequence, we cannot determine the exact probability

function (the probability as a function of j) that generated
it. At best, one can only talk about the probability that
given a function may have generated that sequence. On the
other hand, if one uses a particular probability function to
generate a collection of infinitely many sequences, then we
know the exact probability for each step. Therefore, given
the collection of many sequences, one can uniquely deter-
mine the probability function that generated that collection.
If that function comes from a particular model A (for some
choice of model parameters), then we can safely conclude
that model A is the correct model.

In other words, when we fit individual student data to a
model (fitting model parameters separately for each stu-
dent), then we can make no statements about what model is
“correct” in the sense that it may have generated the data.
We can only talk about a model being a good fit in the sense
that it is “close” to the data. On the other hand, if we aggre-
gate data from many students and fit to a model (finding the
best fit model parameters), then we can talk about a model
being correct in the usual sense that it may have generated
the data.

If we are interested in determining the effectiveness of help
given or of a particular student behavior, we are more con-
cerned about being “close” to the student data than finding
the correct theory of learning, so the fact that the step model
fits the data better than the logistic function and the BKT
model is of practical value when analyzing student log data.
However, one should not then conclude that the step func-
tion is a better model of student learning, in the usual sense.
The better fit does not predict anything about the nature of
learning.
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Figure 5: Mean Akaike weights for the three models,
Psteps Plogistics and PpkT, when fit to randomly gener-
ated data of length n. (Each mean is calculated by
averaging over 10,000 random bit sequences.) Also
shown is a fit to a function of the form a + b/n and
a dashed line marking the asymptotic value a. Note
that the large differences between the weights per-
sist in the n — oo limit.

Our results suggest that the step model may be useful for
modeling the learning of an individual student. However,
the step model assumes that learning a skill occurs in a
single step. Is this how people actually learn? Certainly,
everyone has experienced “eureka learning” at some point in
their lives. However, it is unclear how well this describes
the acquisition of other skills, especially since many KCs
are implicit and people are not consciously aware that they
even know them [9]. Certainly, if the student performance
bit sequence is of the form 00...011...1, it seems safe to
assume that learning occurred all in one step, corresponding
to the first 1 in the sequence. However, it is possible that
the transition from unmastered to mastery occurs over some
number of opportunities and the bit sequence of steps takes
on a more complicated form. In a companion paper [14], we
introduce a method (based on AIC) that can describe grad-
ual mastery, even though the step model itself assumes all-
at-once learning. In that approach, for a given bit sequence,
one speaks about the probability that learning occurred at a
particular step.

Finally, we see that the scatter plot of Akaike weights for
student data is remarkably similar to the scatter plots for
the random model. This suggests that the student data has a
high degree of randomness, and, in general, that study of the
random model may be quite useful for better understanding
the student data.
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