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ABSTRACT 

Large amounts of data are generated while students interact with 

computer based learning systems. These data can be analysed 

through data mining techniques to find patterns or train models 

that can help tutoring systems or teachers to provide better 

support. Yet, how can we exploit students’ data when they 

perform small-group face-to-face activities in the classroom? We 

propose a novel approach that aims to address this by discovering 

the strategies followed by students working in small-groups at a 

multi-tabletop classroom. We apply two data mining techniques, 

sequence and process mining, to analyse the actions that 

distinguish groups that needed more coaching from the ones that 

worked more effectively. To validate our approach we analysed 

data that was automatically collected from a series of authentic 

university tutorial classes. The contributions of this paper are: i) 

an approach to mine face-to-face collaboration data unobtrusively 

captured at a classroom with the use of multi-touch tabletops, 

and ii) the implementation of sequence mining and process 

modelling techniques to analyse the strategies followed by 

groups of students. The results of this research can be used to 

provide real-time or after-class indicators to students; or to help 

teachers effectively support group learning in the classroom.  
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1. INTRODUCTION 
Collaborative face-to-face activities can offer particular 

advantages compared to computer-mediated group work [17]. 

These include a natural channel for both verbal and non-verbal 

communication, improved perception of quality of group 

discussions, and an increased productivity in completing tasks 

[17, 18]. The classroom is a common environment in which the 

teacher can foster face-to-face collaboration skills acquisition by 

making use of small-group activities [8]. However, even in small-

group activities, it is challenging for teachers to provide students 

the attention that they may require and be aware of the process 

followed by each group or their individual contributions [21]. 

Commonly, teachers try to identify the groups that work 

effectively to leave them work more independently and be able to 

devote time to groups needing their attention.  

Multi-user shared devices, such as interactive tabletops, provide 

an enriched space where students can communicate face-to-face 

with each other and, at the same time, interact with a large work 

area that has access to digital content and allows the creation of 

persistent artefacts [14]. Interactive tabletops may afford new 

possibilities to support learning but they also introduce 

additional challenges for a new space of interaction. In order for 

these tabletops to be integrated into the classroom, as with any 

emerging technology, they should provide additional support to 

teachers compared with what they can currently do without such 

technology [4]. Currently, these devices are making their way 

into the classroom in the form of multiple interactive tabletops 

that have the potential of providing teachers with new ways to 

control groups [1, 11]; plan and enact authentic collaborative 

activities [10]; and monitor students’ progress [5, 11]. 

At the same time, the increasing usage of technology for learning 

and instruction has made it possible to collect students’ traces of 

activity resulting in large amounts of data gathered while they 

interact with computer based learning systems. These data can be 

analysed through data mining techniques to find patterns or train 

models that can help tutoring systems or teachers to provide 

enhanced support [3]. Although there is substantial research 

work on mining students’ data obtained from individual or online 

learning systems, there is still little research on automatically 

exploiting the data generated when learners perform small-group 

face-to-face activities in the classroom. 

A slightly hidden potential of interactive tabletops is that they 

can open new opportunities for capturing learners’ digital traces 

of activity, offering teachers and researchers the possibility to 

inspect the process followed by students and recognise patterns 

of group behaviour [12]. This paper presents a novel approach 

that focuses on analysing face-to-face collaboration data to 

discover the strategies that distinguish groups that need more 

coaching from the ones that work effectively.  

To validate our approach we analysed data that was 

automatically and unobtrusively collected from authentic 

tutorials that covered part of the regular curricula of a university 

subject in the area of Management. The teacher designed a 

small-group collaborative activity, based on the concept mapping 

learning technique, using our multi-tabletop classroom 

environment called MTClassroom [11]. This allows multiple 

small-groups of students to work around a number of interactive 

tabletops, perform a series of tasks, discuss a topic and provide a 

solution to a case proposed by the teacher. The system 

automatically logs identified students’ actions on the shared 

device and all the steps that groups performed to build a 

collaborative artefact. We describe the application of two data 

mining techniques. First, we used a sequential pattern mining 

technique to look for patterns that can help find differences 

between groups according to the teacher assessment. Then, we 

used the Fuzzy Miner tool [6] to discover the processes most 

often followed by both high and low achieving groups. The main 

contributions of this paper are: i) an approach to mine face-to-

face collaboration data unobtrusively captured at a classroom 



Figure 1. MTClassroom: a multi-tabletop classroom with 

capabilities for capturing differentiated students’ activity. 

 

with the use of multi-touch tabletops, and ii) the implementation 

of sequence mining and fuzzy modelling techniques to analyse 

and discover strategies followed by groups of students.  

The paper is structured as follows. The next section describes the 

state of research on the areas of interactive tabletops in the 

classroom and data mining for collaborative learning. Then, we 

present details of the multi-tabletop tutorials and our technical 

infrastructure. Section 4 presents the motivation and design of 

study. Section 5 describes the data pre-processing and the 

methods. Section 6 presents a discussion of the results. Section 7 

states the conclusions and the avenues for future research.  

2. RELATED WORK 
There is a steady growth of the usage of tabletops in education. 

More specifically, there are a number of research projects that 

have used multiple tabletops or shared devices in the classroom. 

One of these is Synergynet [1], a multi-tabletop setting that has 

served to study the ways school kids collaborate and interact to 

achieve group goals. This project also included the design of 

tools for the teacher to control the classroom activities. Another 

approach was proposed by Do Lenh [5], who developed a setting 

for training on logistics, that consisted of four tangible horizontal 

devices that could be orchestrated by the teacher using paper-

based commands or through a remote computer. This project also 

offered minimalist indicators of progress of each small group 

presented at a wall display. Even though these two previous 

projects included real students and teachers, they were mostly 

designed and deployed as experimental scenarios. A different 

approach was followed by Martinez-Maldonado et al. [10], who 

presented a multi-tabletop system that permitted teachers to 

assess the design and enactment of their planned classroom 

activities through the use of analytics tools. This is the only 

previous work that has focused on exploiting the collected data 

from a multi-shared device environment to describe the activities 

that occur in an authentic classroom.  

In the case of data mining applied to collaborative settings, the 

closest study to ours was presented by Martinez-Maldonado et al. 

[12]. It consisted in extracting and clustering frequent sequential 

patterns to then link them with high level group actions at a pen-

based tabletop learning application called Mysteries. One 

important study, even though not related to tabletops, was 

performed by Perera et al. [20] who explored the usage of 

sequence mining alphabets and clustering to find trends of 

interaction associated with effective group-work behaviours in 

the context of a software development tool. Moreover, Anaya et 

al. [2] analysed a computer-mediated learning tool to classify and 

cluster learners according to their level of collaboration.  

The work reported in this paper is the first effort we are aware of 

that proposes an integrated solution, inspired by authentic needs 

of the teacher in the classroom, to exploit the students’ data that 

can be captured by multiple tabletops though the application of a 

data mining technique and a process modelling tool.  

3. MULTI-TABLETOP TUTORIALS 
This section describes our technical infrastructure that consists 

of: the multi-tabletop classroom, a teacher’s dashboard, the 

system for capturing identified learners’ actions and a learning 

tool for building concept maps. We also describe the teacher’s 

design of the tutorials. 

3.1 Technical Infrastructure 
Our multi-tabletop classroom is called MTClassroom [11]. This 

has a number of interconnected multi-touch interactive tabletops 

(four in this study). Figure 1 shows an instance of MTClassroom 

for a demo tutorial. Each tabletop consists of a 26 inch PQlabs 

overlay placed over a high-definition display that is enriched 

with Collaid [9]. Collaid is a system that provides an ordinary 

interactive tabletop the capability of automatically and 

unobtrusively identifying which person is touching where, based 

on an over-head depth sensor (www.xbox.com/kinect ). Using this 

system, each tabletop can identify actions performed by each 

student according to their seating position.  

The logging system of each tabletop records the activity logs to a 

central synchronised repository that can be accessed in real time 

by other services. One of these is a teacher’s dashboard called 

MTDashboard [11]. This dashboard provides functions for the 

teacher to orchestrate the tabletops (e.g., blocking the touch input 

of all tables or moving the class to the next phase) and to see key 

live-indicators of work progress of each small-group. Figure 2 

shows the teacher holding the dashboard, displayed on a tablet 

device, while she provides feedback to a group. The classroom 

activity consisted in elaborating collaborative concept maps 

about a case proposed by the teacher. Concept mapping is a 

technique that promotes learning by allowing students to visually 

represent their understanding in the form of concepts associated 

by linking words that creates statements [16]. We used a 

minimalist version of a tabletop concept mapping application 

called Cmate [9]. Cmate provides students with a list of concepts 

and linking words suggested by the teacher, and also allows them 

to type their own words, in order to build a concept map that 

represents their solutions. Prior to the tutorials, the teacher 

creates a master concept map with the crucial concepts and links 

that learners are expected to include in their maps.  

3.2 Tutorials Design 
Eight tutorial sessions were organised in the School of Business 

of the University of Sydney during week 6 of semester 2, 2012 

for the course: Management and organisational ethics. The 

teacher designed a case resolution activity to cover the topic of 

the curricula corresponding to that week. A total of 140 students 

attended these tutorials (from 15 to 20 students per session) that 

were organised in groups of 4, 5 or 6 students.  

The teacher designed the tutorial script as follows: 1) 

Introduction (10 minutes): the teacher forms groups, explains to 

students how to use the concept mapping application and 



Figure 2. A teacher attending a group while holding the 

MTDashboard 

 

Table 1. Possible actions on the concept mapping tabletop system 

High impact actions 

(content and structure) 

Low impact actions 

(layout) 
No impact actions 

Add a concept/link Move a concept/link Open or close menus 

Delete a concept/link Merge two links Move/scroll menu-

concepts  Edit a concept/link  

 

introduces the first activity. 2) Activity 1 (10 min.): using the 

MTDashboard, the teacher cleans up the four tabletops for all 

groups to start at the same time. Students are instructed to create 

a concept map that represents how the main actors of the case are 

associated. 3) Reflection 1 (5 min.): the teacher blocks the 

tabletops, leads a short class discussion about partial solutions 

and introduces Activity 2. 4) Activity 2 (15 min.): this is for the 

teacher “the most important activity of the tutorial from the 

learning perspective”. The teacher unblocks the tabletops, and 

students discuss and focus on representing a final solution to the 

case in their concept map. 5) Class sharing and reflection (10 

min.): the teacher asks each group to share their solution with the 

class. After each group has explained their map, the teacher 

summarises the outcomes of the tutorial, finishes the session and 

assesses each group in private. The class time was fixed to 50 

minutes. Details of these tutorials can be found in [11]. 

4. STUDY DESIGN AND DATASET 

DESCRIPTION  
The teacher in the classroom can face a number of challenges 

related with control, awareness and resources management [22] 

which depend on a number of factors that may fall out of the 

scope of what tabletop systems can capture. The tabletop systems 

are not totally aware of the classroom situation, for example, if a 

group of students is talking, if they work on-task or if someone 

needs to leave the class. The teacher can have a better idea of the 

productivity of students’ discussions within each group, however, 

one of the main conclusions after finishing the tutorials was that 

for the teacher it is not easy to know aspects of the final artefacts 

that students built or their individual contributions [11].  

In a post-tutorial interview the teacher expressed her view as 

follows: “I don’t want to see a lot of information in the 

dashboard, this can be distracting. But more information can be 

provided after the tutorials for assessment, like who did what, 

when, and the quality of the work”. These are indeed the aspects 

of group work that tabletops are aware of in detail. Our system 

can capture: 1) differentiated students’ action on the tabletop; 2) 

the sequential actions performed to build the group artefact.  

Inspired by the above teacher needs, but framed on what 

tabletops can actually capture in an authentic classroom, we 

propose an approach to distinguish strategies followed by groups 

that either needed more coaching or worked effectively. We 

analyse three sources of contextual information i) identified 

individual actions on the tabletop that can occur in parallel, in 

turn, or on other students’ objects, ii) the quality of students’ 

actions according to the teachers’ artefact, and iii) the impact of 

students’ actions on the group artefact. In this paper we focus on 

the students’ actions performed in Activity 1. This is important 

because a certain degree of success in Activity 1 is required for 

Activity 2. This also allows the approach to be applicable in real-

time, to provide feedback to teachers before the tutorial is over, 

so they can target their support during Activity 2. 

The teacher assessed groups at the end of each tutorial, using one 

of three possible values: low, medium or high achievement. The 

teacher specified that the assessment criteria mostly considered 

the quality of each group solution presented at the end of the 

tutorial and the quality of their discussions during the tutorial. 

We considered the activity data of all the 32 groups divided in 

two sets: 20 groups that were high achieving and 12 groups that 

were medium or low achieving.  

The initial raw data of each group consists of a long sequence of 

actions in which each element is defined as: {Resource, 

ActionType, Author, Owner, Time, Relevance}, where Resource 

can be: Conc (concept), Link (proposition) or Menu. ActionType 

can be: Add (create a concept or link), Del (delete), Mov (move) 

links, Chg (edit), Scroll, Open or Close (a menu). Author is the 

learner who performed the action, Owner is the learner who 

created an object or owns a menu, Time is the timestamp when 

the action occurred and Relevance indicates if the concept or link 

belongs to the crucial elements of the teacher’s map. Table 1 

lists all the possible actions in the dataset grouped by their 

impact on the group concept map. Some examples of actions are: 

{ConceptA, Add, 3, 3, 17:30:02, Crucial}, when a learner adds a 

crucial concept to the map; {LinkY, Move, 2, 6, 17:30:04, Irr}, 

when s/he moves a link created by another learner; and 

{MenuConcepts, Open, 2, 2, 17:30:07,-} when s/he opens the list 

of suggested concepts.  The original sequence obtained for each 

group contained from 74 to 377 physical actions. 

We address four research questions regarding the strategies and 

characteristics that can differentiate groups according to their 

extent of achievement. The formulation of these is based on the 

triangulation of the nature of the available data (differentiated 

students’ actions and their impact on their artefact), the teacher’s 

needs (awareness on students’ participation and quality of their 

work), and open issues in the study of multi-tabletop classrooms 

[10]. Our research questions are the following. 1) Can we 

distinguish groups by inspecting patterns of parallelism and 

turn-taking? As the teacher is interested in the participation of 

all students in the construction of the group solution [10], we 

analyse whether it is possible to find differences among groups 

where students worked at the same time (in parallel or taking 

turns) or not. 2) Can we distinguish groups by inspecting 

students’ interactions on others’ objects? Other studies inspired 

this question; these have suggested that interacting with what 

others’ have done may trigger further discussion that is beneficial 

for tabletop collaboration [11, 13]. 3) Can we distinguish groups 



Table 2. Keywords included in the alphabets for the sequential pattern mining. 

Resource Action type 
Alphabet 1 

Parallelism –turn 

taking 

Alphabet 2 
Actions on others’ 

objects 

Alphabet 3 
Master map 

distance 

Concept (Conc)-C Add -C,L Delete (Del)-C,L Parallel Own  Cruc (C,L) 

Link -L Edit (Chg) -C,L Merge (Move)-L Other NoOwn NoCruc (C,L) 

Menu -M Move -C,L,M Open -M Same   

  Close -M    

Inactivity block (Inact)-B Short(Shrt) -B Long –B    

 

by inspecting students’ map quality? This and the next question 

are directly inspired by teachers’ needs, as noted above, and the 

data captured by our system about the groups’ artefacts and the 

process followed to build them. 4) Can we distinguish groups by 

inspecting the process followed by students’ actions and their 

impact on the group artefact?  

5. METHOD 
Sequential mining and process mining are techniques that have 

been used to identify patterns in educational datasets by 

considering the order of students’ actions [7, 12, 19]. We used a 

sequential pattern mining technique called differential sequence 

mining [7] to distinguish strategies followed by groups that were 

either high or low achievers and address each of our first three 

research questions. For these, we analysed two of the sources of 

contextual information listed in the previous section: i) identified 

actions on the tabletop and ii) the quality of students’ artefact. In 

order to address the fourth question, and analyse the strategies 

that distinguish groups according to iii) the impact of students’ 

actions on the group map, we used the Fuzzy Miner tool [6]. Next 

subsections present the motivation for using these tools, the data 

pre-processing and the implementation of each technique. 

5.1 Sequence mining 
One of the data mining techniques that has been succesfully 

applied to identify patterns that differentiate high from low 

achieving students is differential sequence mining (DSM) [7]. In 

general, a sequential pattern is a consecutive or non-consecutive 

ordered sub-set of a sequence of events that is considered 

frequent when it meets a minimum support threshold. In 

educational contexts, the events commonly correspond to 

individual or grouped students’ actions logged by the learning 

system. The DSM algorithm extracts frequent consecutive 

ordered sequences of actions from 2 datasets and performs an 

analysis of significance to obtain the patterns that differentiate 

them. The actions can also contain contextual information as 

defined by an alphabet. Alphabets can be used to encode each 

action to a set of concatenated keywords. In our study, each 

action was encoded to the format {Resource-ActionType-

Context}. We implemented a DSM solution to investigate the 

differential patterns in terms of degree of parallelism, actions of 

students on others’ objects and relevance of the links and 

concepts students use according to the teacher;s map. Table 2 

presents the keywords of each of our three alphabets. The 

encoded actions encoded using any alphabet should contain at 

least one keyword for the Resource column and one for the 

ActionType column. We add one keyword of the corresponding 

contextual information (three rightmost columns in Table 2) 

according to the Resource type. Alphabet 1 aims to model the 

differentiated individual actions performed on the tabletop that 

occur in parallel (with other students’ actions, keyword: 

Parallel), in turns (when the previous action was performed by a 

different student, keyword: Other), or as a series of actions by the 

same student (Same). Alphabet 2 models the actions that 

students perform on their own objects (Own) or on other 

students’ objects (NoOwn). Finally, Alphabet 3 indicates whether 

the concept or link involved in the action belongs to the crucial 

objects defined by the teacher (Cruc or NoCruc).  

In a previous study, we found that it is very important to consider 

the periods of significative inactivity registered by the tabletop 

[11]. During these periods of inactivity students can be having 

productive discussions, off-task talking or not working 

collaboratively at all. In our study, even when we do not perform 

speech detection, it is important to at least consider the 

occurrence of inactivity. To define a period of inactivity, we 

explored the time gap between each action performed on the 

tabletop. We found that time gaps between actions below one 

standard deviation from the mean (<µ+1σ) account for the 92% 

of the set. (µ= 4.30 seconds, σ= 8.62, µ +1σ=13 seconds). This 

means that a period above 13 seconds without logged actions can 

be considered as a block of inactivity. We defined these blocks as 

short when the gap was between 13 (µ+1σ) and 22 (µ+2σ) 

seconds, and long, for gaps longer than 22 seconds (µ+2σ). We 

detected from 6 to 19 periods of inactivity in each group.  

The output of the DSM algorithm, using the three alphabets, 

consists of three sets of frequent sequential patterns that 

differentiate high from low achieving groups according to the 

teacher’s assessment. In this study, we set a minimum support of 

0.5 to consider a pattern as frequent and a maximum error of one 

to allow matching sequences with up to 1 different action, 

similarly to previous work on educational data exploration [7].  

5.2 Process mining 
The sequence mining approach presented above can extract 

patterns of activity that distinguishes groups; however, it does 

not give insights of the higher level view of the processes 

followed. The Fuzzy miner [6] is a process discovery tool that 

can generate a meaningful abstraction of a general process, from 

multiple instances by distinguishing the activities that are 

important. It is especially suitable to mine unstructured 

processes, like the concept mapping construction in this study. 

The input of this algorithm is a series of consecutive actions, or 

group of actions. The result is a directed graph in which each 

node represents an action, or group of actions, and the edges 

represent the transitions between these. The nodes and edges that 

appear in the graph should meet a conformance threshold based 

on the instances that were used to build the model.  

The objective of this second analysis is to discover the meaning 

of the higher level steps that high and low achieving groups 

performed to build the concept map and the impact of such 

actions. For this, we performed the following data preparation 

before using the Fuzzy miner tool. 



Figure 3. Distribution of the length of the sets of activity in 

terms of number of actions. 
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1) Data grouping. We grouped the actions into periods of activity 

in order to generalise similar actions according to their impact on 

the concept map. First, we explored the number of actions 

contained in each period of activity between periods of inactivity. 

Figure 3 illustrates the frequencies of the number of actions 

within blocks of activity in the dataset (µ= 12.85 actions, σ= 

17.68). The distribution shows a high frequency of periods with a 

small number of continuous actions, and a long tail of longer sets 

of actions. In fact, the 71% of the periods of continuous activity 

were below the mean size (13 actions) and the 87% of them were 

below one standard deviation from the mean (30 actions). We 

considered the mean (13 actions) as a practical threshold for the 

maximum size of a block of activity.  

2) Actions categorisation. Based on the definition and previous 

research on concept mapping [15, 16], we categorise students’ 

actions according to their impact on the group map. Actions that 

make a change in the structure or content of the concept map are 

categorised as High-impact actions. These include actions that 

modify the quantity or content of concepts and links (Table 1). 

The second category is Low-impact actions, which includes 

actions that modify the layout of the map, which is important for 

the activity, but not crucial. These actions include moving 

concepts and links, or merging links. Finally, actions performed 

on the menus of the application belong to No-impact actions.   

3) Blocks categorisation. Each block was categorised according 

to the actions that occurred within that period following the next 

rules: HighOnly for blocks that contained only high-impact 

actions and some no-impact actions; HighLow, if the block 

contained at least one high-impact and one low-impact actions; 

LowOnly, for blocks that contained only low-impact actions and 

no-impact actions; and NoImpact if the block contained just no-

impact actions. Periods of inactivity were categorised as either 

InactShort or InactLong, as explained earlier.  

4) Addition of contextual information. According to our research 

aim, we highlighted the importance of distinguish the learners 

who work on their own or on other students’ objects. For this, we 

added the information about who touched which object with the 

keywords NoOwn if most of the actions were performed on 

others’ objects and Own if the actions were performed on the 

same learners’ objects.   

After performing the data preparation we divided the dataset into 

two sets, one for high and one for low achieving groups, as we 

did for the sequential mining. We generated two corresponding 

fuzzy models using the plugin implemented in the ProM 

framework (www.processmining.org). Then, we performed two 

model analyses: analysis of the number of active learners, and a 

validation of the models to discriminate groups. 

Analysis of number of active learners. We explore whether there 

is a difference in the number of learners that were actively 

involved in each of the significant activities that appear in each 

fuzzy model (the nodes of the model). For the latter, the explored 

values corresponded to blocks of activity in which only one 

learner (1u), two (2u), or more than 2 learners (+u) were 

involved in the actions within a block of activity. This takes into 

account that all groups had from 4 to 6 group members. No 

correlation was found between the group size and the level of 

achievement of each group (r = 0.2). 

Validation of the models. We performed a cross validation of the 

two models to evaluate if they can be used to effectively 

differentiate high from low achieving groups. To do this, we 

calculate, for each group process, the level of conformance of 

both fuzzy models and validate that the model that fit the most 

corresponds to the level of achievement of the group.  

6. RESULTS AND DISCUSSION 

6.1 Sequence mining results 
After applying the DSM algorithm on the encoded datasets 

according to our three alphabets, we selected the patterns whose 

instance support (number of times the pattern is repeated within 

a group log) differed between the high and low achieving groups 

(p<=0.10) and that were composed of at least 2 actions. Table 3 

presents the top-4 most frequent sequences for each of the three 

alphabets explored in this part of the study. 

Alphabet 1: focused on parallelism and turn-taking. We obtained 

a total of 23 differential patterns for groups that were either high 

or low achieving after analysing the first encoded dataset. The 

top sequences in Table 3 indicate the presence of actions in 

parallel for move events (sequence A) and actions that contain 

the keyword Other, when adding and moving elements of the 

concept map (sequences B, C and D). These provide evidence 

that in high achieving groups more than 1 student quite often 

interacted with the tabletop at the same time. In fact, the 

keywords Parallel and Other appeared in 13% and 66% in the 

frequent patterns of high groups, while in the low achieving 

groups there were no patterns with the keyword Parallel and the 

keyword Other only appeared in the 30% of them.  

Alphabet 2: focused on actions on others students’ objects. In 

this case, we obtained a total of 29 differential patterns. Table 3 

shows that in high achieving groups, students tended to interact 

with objects created by other students, such as moving and 

adding links using others’ concepts, either followed or preceded 

by periods of inactivity (keywords NoOwn and Inact in sequences 

I, J, and L). The keyword NoOwn appeared two times more often 

in the frequent sequences of the high groups than in the 

achieving groups (in 42% and 22% of the sequences 

respectively). The presence of actions on students’ own objects 

(Own) was similar in all groups. 

Alphabet 3: focused on Master map distance.  We obtained 28 

differential patterns by analysing the encoded dataset. This 

includes contextual information of the concepts and links that 

belong to the crucial elements defined by the teacher. The 

patterns in Table 3 show that in high achieving groups, students 



Table 3. Top-4 most frequent sequences after applying differential sequence mining on each encoded dataset.  

Alphabet 1 High achieving groups  Low achieving groups 

A- {Menu-Mov-Same}>{Menu-Mov-Same}>{Menu-Mov-Parallel} E- {Link-Add-Same}>{Link-Rem-Same}>{Con-Mov-Same} 

B- {Con-Mov-Other}>{Link-Add-Same}>{Con-Mov-Same}> 

     {Link-Add-Same} 
F- {Link-Rem-Same}>{Con-Mov-Same}>{Link-Add-Same} 

C- {Inact-Shrt}>{Con-Mov-Other}>{Link-Add-Same} G- {Link-Add-Same}>{Link-Chg-Same}>{Inact-Long} 

D- {Con-Mov-Other}>{Link-Add-Same}>{Con-Mov-Same} H- {Inact-Long}>{Inact-Shrt}>{Con-Mov-Same} 

Alphabet 2 High achieving groups  Low achieving groups 

I-   {Con-Mov-NoOwn}>{Con-Mov-NoOwn}>{Link-Add-Own}> 

    {Inact-Shrt} 

M- {Inact-Shrt}>{Con-Mov- NoOwn }>{Link-Add-Own}> 

      {Link-Chg-Own} 

J- {Inact-Shrt}>{Con-Mov- NoOwn }>{Con-Mov- NoOwn }> 

    {Link-Add-Own} 
N- {Link-Add-Own}>{Link-Chg-Own}>{Inact-Long} 

K- {Link-Mov- NoOwn }>{Link-Mov- NoOwn }>{Con-Mov- NoOwn } O- {Link-Chg-Own}>{Inact-Long} 

L- {Inact-Shrt}>{Con-Mov- NoOwn }>{Con-Mov- NoOwn } P- {Inact-Long}>{Inact-Shrt}>{Con-Mov- NoOwn } 

Alphabet 3 High achieving groups  Low achieving groups 

Q- {Con-Mov-Cruc}>{Link-Add-Cruc}>{Con-Mov-Cruc}> 

     {Link-Add-Cruc} 

U- {Link-Rem-NoCruc}>{Con-Mov-Cruc}>{Link-Add-Cruc}> 

     {Link-Chg-NoCruc} 

R- {Inact-Shrt}>{Con-Mov-Cruc}>{Con-Mov-Cruc}>{Link-Add-Cruc} V- {Link-Chg-NoCruc}>{Link-Chg-NoCruc}>{Inact-Shrt} 

S- {Link-Add-Cruc}>{Link-Mov-Cruc}>{Con-Mov-Cruc} W- {Inact-Shrt}>{Link-Add-Cruc}>{Link-Chg-NoCruc} 

T- {Link-Chg-Irr}>{Con-Mov-Cruc}>{Link-Add-Cruc} X- {Con-Mov-Cruc}>{Link-Add-Cruc}>{Link-Chg-NoCruc}>{Inact-Long} 

 

tended to work with more crucial elements than low achieving 

groups. However, an analysis of all patterns found showed that 

there was not a large difference in actions performed on crucial 

elements (keyword Cruc was present in 87% and 84% of the 

patterns of high and low achieving groups respectively). 

However, the key difference was that high achieving groups 

interacted with less non-crucial concepts and links (keyword 

NoCruc was in 19% and 73% of the patterns of high and low 

achieving groups respectively). 

The sequences of events extracted using this technique, provides 

some insights about the strategies followed by groups. Low 

achieving groups tend to have long periods of inactivity on the 

tabletop before or after creating links or performing a chain of 

actions that affect the layout of their concept map (e.g. action 

Inact-Long in patterns G, H, N, O and X). High achieving groups 

also had periods of inactivity, but these were shorter. Long 

periods of inactivity appeared two times more in the low 

achieving groups, followed or preceded by other actions (Inact-

Long appeared in 48% and 22% of the sequences of high and low 

achieving groups respectively). There was no difference in the 

appearance of short periods of inactivity.  

These findings suggest that, to discover the strategies followed 

by groups, this approach offers a limited view of the meaning of 

the actions. The frequent sequences that were found can be used 

to build a model or benchmark to ‘detect’ if students’ actions are 

similar to either high or low achieving groups. However, the 

patterns themselves do not provide information about the process 

that groups followed during the activity that would be easily 

associated with groups’ behaviours.  

6.2 Process mining results 
Figure 4 shows the resulting fuzzy models after applying the 

second approach to mine the process of both, high and low 

achieving groups where the conformance with their 

corresponding datasets was above 80%. Nodes of the graph 

represent categories of action blocks of activity and the edges the 

transitions between these. Each node contains: the name of the 

block category, the conformance of the block with the dataset, 

and the rates of active students that were involved in the 

activities (1u, 2u and +u). Nodes with conformance rates below 

to 0.1 were not considered in the models to include the majority 

of the block categories but disregarding the actions that rarely 

appeared in the data and that would make the graph 

unnecessarily complex. The numbers next to the edge lines are 

indicators of conformance of the transitions with the datasets.  

By visually comparing both graphs we can highlight that they 

share the same core blocks of activity. These include: the blocks 

Inact-Short and Inact-Long (marked with an orange small square 

in the top left of the node). We confirmed the results obtained 

with the sequence mining, where low achieving groups showed 

more long periods of inactivity compared with high groups 

(conformance of 0.68 and 0.98 respectively). Both models also 

have in common the categories HighLow-NoOwner and 

HighLow-Owner (blue markers) that represent activity that 

combined high and low impact actions on the group map 

(conformance of 1 and around 0.4 respectively). The last 

similarity, in terms of nodes, corresponds to blocks of low impact 

actions where students interacted with other students’ objects 

(LowOnly-NoOwner, red markers).  

The nodes marked with a yellow star correspond to activity 

blocks that appear in one model but not in the other. High 

achieving groups, contrary to the expected, presented more 

blocks of actions with no impact on the concept map (NoImpact-

Owner/NoOwner). However, both nodes had the least 

conformance with the model (0.11 and 0.2 respectively). In 

contrast, low achieving groups presented blocks of activity with 

only high impact actions (HighOnly- Owner/NoOwner). The 

conformance of these blocks was not low (conformance of 0.37 

and 0.74 respectively).  

However, the main difference between the models is in the 

structure of the transitions. For the model of high achieving 

groups, there is only one transition between different blocks of 

activity. This was, in addition, not very frequent (0.08 

conformance, between NoImpact-Owner and HighLow-Owner). 

By contrast, the model of low achieving groups contains 5 

transitions between activity nodes with a conformance of up to 

0.17 (between HighLow-Owner and LowOnly-NoOwner). 

Additionally, we did not find any observable difference in the 

actions performed on other students objects (NoOwner) and 

students’ own objects (Owner). 



Table 5.  Validation of the fuzzy models 

 Predicted class 

 High Low 

Actual 

class 

High 17 3 

Low 0 12 

 

Table 4.  Distribution of the number of active learners in 

blocks of activity 

Achievement 
One learner 

(1u) 

Two learners 

(2u) 

More learners 

(+u) 

High 55% 18% 27% 

Low 54% 27% 19% 

 

Figure 4. Fuzzy model generated from groups’ activity. Left: Fuzzy model of high achieving groups (Conformance: 86%, 

Cuttoff: 0.1). Right: Fuzzy model of low achieving groups (Conformance: 81%, Cuttoff: 0.1). 
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Next, we present the analysis of the number of students involved 

in the activities and the validation to determine if the observable 

differences can distinguish high from low achieving groups.  

Active learners. Table 4 shows the results of the cumulated 

distribution of the number of learners involved in the periods of 

activity for both high and low achieving groups (partial rates 

displayed in the third line of text inside each node of Figure 4). 

Both high and low achieving groups presented more than the half 

of the blocks of activity performed by a single student (54/55%). 

The main difference found was that high achieving groups 

presented blocks of activity in which more than two learners 

were involved in comparison with low achieving groups (+u, 

27% and 19% respectively). In low achieving groups most of the 

blocks of activity were performed by either one or two learners.  

Validation. In order to validate that the two models generated by 

the fuzzy miner are different and can be used to distinguish the 

process followed by either high or low achieving groups, we 

estimated how accurately each model will conform to each 

group’s activity. We performed a cross-validation to compare the 

level of fit of both models to the data blocks of each group by 

measuring whether the conformance of the model that 

corresponded to the level of achievement of the group was 

higher. Table 5 shows the confusion matrix which layouts the 

results of this analysis. This indicates that the fuzzy model for 

low achievement could distinguish the 100% of the low 

achieving cases, however, three high achieving groups presented 

a superior conformance to this model. The conformance of the 

model of high achievement was higher for the high achieving 

groups in 17 of the 20 cases. The difference between the levels of 

fit of each model was statistical significant for high achieving 

groups (paired t(23) = 2.46, p = 0.0219 ) and very close to 

statistical significance (p<=.05) for the model of low 

achievement (paired t(7) = 2.16, p = 0.061). 

7. CONCLUSIONS AND FUTURE WORK 
This paper described the technological infrastructure and the data 

mining and process mining techniques used to analyse the 

strategies that distinguish high from low achieving groups in the 

classroom. We presented a novel approach to mine traces of 

collaboration of students working face-to-face on an activity 

linked with the regular curricula and supported by a number of 

teacher-orchestrated interactive tabletops. Our goal was to 

exploit students’ data that was unobtrusively captured in an 

authentic classroom in contrast to a controlled experimental 

setting. This can make our approach immediately applicable in a 

real classroom context equipped with the technology required. 

Sequential frequent mining was applied to find patterns of 

activity that differentiate groups. Results revealed interesting 

patterns that indicated students in high achieving groups worked 

more often in parallel, interacted with other students’ objects and 

mostly focused on the crucial elements of the problem to solve. 

The fuzzy miner tool was used to model the process that groups 

followed by grouping and categorising students’ actions. This 

modelling proved effective in helping distinguish part of the 

process followed by groups. High achieving groups tended to 

build their concept map interweaving periods of focused activity 

with periods of tabletop inactivity. Low achieving groups, by 

contrast, presented more transitions between different categories 

of blocks of activity including periods with only actions that 

caused high impact on the map. We also found that important 

strategies can be mined from early data. Our analysis was only 

performed on the data captured from the first activity of the 

classroom sessions. This gives time for the results of the analysis 

to be used by facilitators or group members in the classroom. 

The knowledge generated by the sequence patterns and the fuzzy 

models can be used in several valuable ways. Firstly, derived 

groups’ indicators can be displayed in a processed form on the 

teachers’ dashboard to help them adapt in real-time the support 

to groups that might need closer attention. Secondly, the findings 

can be used to generate indicators of group learning to be shown 



to the teacher for after-class reflection or re-design of the activity 

or to reflect on students’ performance or assessment. Thirdly, 

this information can be the basis to build student models that can 

be shown to learners to encourage reflection and self-assessment. 

We acknowledge some current limitations of our approach. The 

first is that the technology to capture students’ actions is not yet 

developed to automatically record verbal interactions in the 

classroom, which is crucial in collaborative work. However, our 

approach proved that even modest interaction data can provide 

insights about their strategies. Regarding the configuration of the 

data mining method, especially for the Fuzzy process mining, 

changing some thresholds can produce different results. For 

example, the size of blocks of activity was set to the mean 

number of actions between two periods of inactivity (13 actions). 

We explored the generation of fuzzy models using two more 

heuristics for the maximum block size: µ/2 and µ+σ. We 

obtained conformance rates as low as 60% for the block size 

heuristic of µ/2, and very similar fuzzy models and conformance 

rates for the heuristic µ+σ compared to the one we used in the 

study. Even when these rates are lower than the ones we 

obtained using the µ heuristic, a deeper analysis of the 

configuration of the approach is part of the work in progress.   

Our current work includes the exploration of ways to present the 

results of our approach to the teacher, in real time and for after 

class analysis. We also aim to connect the students’ data that can 

be captured when they work at the tabletop with other activities 

that they perform, for example, through online learning systems.  
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