
Argument Mining Using Highly Structured Argument
Repertoire

Safia Abbas1 and Hajime Sawamura2

1 Graduate School of Science and Technology, Niigata University
8050, 2-cho, Ikarashi, Niigata, 950-2181 JAPAN

safia@cs.ie.niigata-u.ac.jp
2 Institute of Natural Science and Technology,

Academic Assembly,Niigata University
8050, 2-cho, Ikarashi, Niigata, 950-2181 JAPAN

sawamura@ie.niigata-u.ac.jp

Abstract. Argumentation theory is considered an interdisciplinary research area. Its tech-
niques and results have found a wide range of applications in both theoretical and practical
branches of artificial intelligence, education, and computer science. Most of the work done
in argumentation use the on-line textual data (i.e. unstructured or semi-structured) which is
intractable to be processed. This paper reports a novel approach to build a Relational Argu-
ment DataBase (RADB) with managing tools for argument mining, the design of the RADB
depends on the Argumentation Interchange Format Ontology(AIF) using ”Walton Theory”.
The proposed structure aims to: (i) summon and provide a myriad of arguments at the user’s
fingertips, (ii) retrieve the most relevant results to the subject of search, (iii) support the
fast interaction between the different mining techniques and the existing arguments, and (iv)
facilitate the interoperability among various agents/humans.

1 Introduction

Argumentation theory, or argumentation, embraces the arts and sciences of civil debate, dialog,
conversation, and persuasion. It studies rules of inference, logic, and procedural rules in both artificial
and real world settings. Argumentation is concerned primarily with reaching conclusions through
logical reasoning, that is, claims based on premises. Its techniques and results have found a wide range
of applications in both theoretical and practical branches of artificial intelligence, education, and
computer science [8, 7, 11]. Among other things, we are mainly concerned with argument mapping,
analysis and formal computational argumentation frameworks, where many efforts have been most
devoted as far as we see in the literature[9].

Argument mapping (e. g., Compendium, Araucaria, Rationale, etc.) aims at improving our ability
to articulate, comprehend and communicate reasoning, by producing diagrams of reasoning and
argumentation for especially complex arguments and debates. It is greatly anticipated that it helps
students learning critical thinking methods as well as uses promoting critical thinking in the daily
life. On the other hand, the main concern in formal computational argumentation frameworks is to
formalize methods in which the final statuses of arguments are to be decided semantically and/or
dialectically [8].

Argument mining and argument discovery technologies are particularly needed to summon the
arguments, and help the user who is looking for specific subject or piece of information over a large-
scale database. In this paper, we present a novel approach to sustain argument analysis, retrieval,
and re-usage from a relational argument database (highly structured argument repertoire). Different
mining techniques are used to provide a myriad of arguments at the user’s fingertips, refine the
user’s analysis background, and reveal more relevant search results. This work mainly concerns with
mining arguments through RADB, which summarizes the argument dataset. Such representation
supports the fast interaction between the different mining techniques and the existing arguments, and
facilitates the interoperability among various agents/humans. In addition, the framework outlines are
illustrated, where a mining classifier agent is integrated with an intelligent tutoring system (ITS).

Such integration assists in deepening the understanding of negotiation, decision making, critical
thinking and improving the analysis and intellectual process of students.

The paper is organized as follows. Section 2 illustrates the design and the implementation of the
relational argument database (highly structured argument repertoire) together with different mining
techniques. Section 3 motivates our work and compares it to the most relevant work performed in
the field. Finally, conclusions and future work is presented in Section 4.

2 Relational Argument DataBase

A relational database can be defined as a set of information reformulated and categorized into a
set of files (tables) that can be accessed, gathered (queried), and manipulated in different manners.
According to the AIF ontology, arguments can be represented semantically in the form of nodes
connected with directed edges in a directed graph known as argument network[1]. If the cyclic problem
(the same information node (I-node) refines more than one scheme node (S-node)) is avoided, the
arguments can semantically be represented as directed tree, which can be structured in the form of
well-established relational database, and annotated as relational argument database (RADB).

2.1 Design and Implementation

This subsection describes the building blocks for the relational arguments data bases. We consider
the AIF ontology [1, 6] with some restrictions (such that no edge emanates from I-node to I-node),
and Walton schemes [4] for arguments analysis. Any argument scheme based on Walton theory can
be represented as shown in Fig.1. which represents a general skeleton for the different schemes

Fig. 1. Argument network representation for different Walton schemes

description in Walton theory[4]. The premises block gathers the different premises types (majors,
minors). The critical question’s conclusion block assembles the result of the different critical questions
together with the results of the different presumption questions that are to be exposed in a specific
scheme.

Considering the canonical representation for the schemes, we pose some sentiments about the
relational database baselines. In our design, we gather the different scheme information into three
basic files (tables): Scheme TBL, Scheme Struct TBL and Data TBL. First, the scheme kind is
formulated in Scheme TBL Fig. 2, in which rows act as records of data for different schemes, and
columns as features (attributes) of records. The Scheme TBL creates an identification number(ID)
for each scheme name (Scheme Name), where this ID plays a role of primary key for the table
and foreign key in the others. In addition, any ID attribute will stand for the same function in

all files. Scheme Struct TBL assembles the different information associated with different schemes.
Such that, Scheme Id stands for the foreign key of Scheme TBL, indicating the scheme concerned.
The Content field contains the details of the associated information (premises, conclusion,... etc.).
The Type field has four values, P for premises, C for conclusion, CQ for critical question and CC
for critical argument conclusion. For instance, the expert opinion scheme[4] can be represented as
shown in Scheme Struct TBL of Fig. 2.

Fig. 2. The main structure of different schemes

The Data TBL table contains all users’ transactions. This table gathers all users’ analysis for dif-
ferent arguments. The table consists of : the Stru Id that serves as foreign key for the Scheme Struct
TBL’s ID, and refers to a specific part of the scheme details, the Content attribute contains a por-

tion of the analyzed text that fulfills the referred fixed scheme part, the Type attribute, which holds
three values only, 1 for the supported node, 0 for rebuttal node, -1 for undetermined value that
denotes neither supported nor rebuttal node. Since we consider any argument network as a kind of
directed rooted tree, the Child Of attribute points to the parent of each node, whereas the root
node has no parents (0 refers to no parent). The level attribute refers to the level of each node in the
tree, such that the value 0 indicates the root node. Finally, the argumentation no attribute contains
the number of the analyzed argument context.

For example, the following context below from Araucaria2 repository database[2, 3, 12] is reana-
lyzed based on expert opinion scheme as shown in Fig.3 and Fig.4. ”Eight monthold Kyle Mutch’s
tragic death was not an accident and he suffered injuries consistent with a punch or a kick, a court
heard yesterday. The baby, whose stepfather denies murder, was examined by pathologist Dr James
Grieve shortly after his death. Dr. Grieve told the High Court at For far the youngest was covered
in bruises and had suffered a crushed intestine as well as severe internal bleeding. When asked by
Advocate Depute Mark Stewart, prosecuting, if the bruises could have been caused by an accident,
he said ”No. Not in a child that is not walking, not toddling and has not been in a motor car.” Dr.
Grieve said the injuries had happened ”pretty quickly” and would be ”difficult for an infant to cope
with”. The lecturer in forensic medicines at Aberdeen University told the jury that the bruises could
have been caused by a single blow from a blunt instrument, like a closed hand. Death, not accident,
court told, ”Evening Telegraph”, Monday, September 13, 2004, p.11”

Regarding to the canonical representation for Waltons schemes presented in Fig.1, the given
context could be analyzed as shown in Fig.3 based on expert opinion scheme [1]. Moreover, this
analysis will be devolved through transaction records, as shown in Fig.4, to the structured data base
(RADB) revealing the different parties of the analysis.

2.2 Framework Overview

Yun Chi et al. [13] surveyed the current algorithms used for mining frequent subtrees from databases.
They focused on two main components of these algorithms, the candidate generation step and the
support counting step. They revealed that there is no single best tree mining algorithm. Some algo-
rithms offer a better time efficiency, while others require less memory. So every time we manipulate
2 http:// araucaria.computing.dundee.ac.uk/

Fig. 3. The analysis diagram of the above context based on expert opinion scheme

Fig. 4. The transaction records of the above analysis

the proposed RADB we will consider the time and memory consuming.

We draw a preliminary vision for retrieving and mining the RADB, using a framework with ITS
component incorporated. The framework as depicted in Fig.5 consists of three main components: the
parser module, the mining classifier agent, and the ITS. The parser module receives a statement
S from the intended users such as students or agents. the statement is divided by the parser into
tokens, then the number of tokens is reduced. Finally the final crucial set of words { I1, I2,..., In }
is sent to the classifier agent. The tokens are reduced if they belong to a look up table containing
the set of all unnecessary words like{a, an, the,...,etc }, otherwise it is added to the set of tokens
to be sent to the classifier agent. The importance of the parser module lies in reducing the set of
tokens which in turn will reduce the number of iterations done by the classifier agent, and improve
the complexity of the used mining algorithms.

The classifier agent classifies the retrieved contexts depending on the students specification. The
agent can classify the retrieved arguments by priority, polarity, scheme name, premises (with/against),
and by conclusion. The priority aims to show the retrieved contexts organized by the maximum

Fig. 5. Framework outline

support number based on the classification mining technique AprioriTid [10, 5]. Polarity classifies
the retrieved arguments in to two classes, support class and against class, using the text mining
techniques. Scheme name retrieves the desired contexts depending on a specific scheme name deter-
mined by the student. Premises (with/against) retrieves arguments by searching only in the different
premises, and conclusion retrieves and classifies the arguments by searching only in the different
conclusions. The classifier agent receives the set of crucial words { I1,I2, ..., In } from the parser
module and the search type from the student, then retrieves and classifies the documents that are
relevant to the student’s search statement from the RADB using the multi-term text phrases ap-
proach[5] such that T={ T1,T2,...,Tm } is the collection of raw documents, I={ I1,I2,,In } is a set
of words appearing in T. T’={ T’1, T’2,..., T’m } is the set of documents, where T’i contains a set
of multi-term phrases I’={ I’1, I’2,..., I’n }, I’i= Ij

⋃
Ij+q

⋃
....

⋃
Ik, where 1 ≤ j ≤ k ≤ n, q ∈

[1,2,..,k-j], and Ii can appear in I’i repeatedly. The importance of this classifier agent lays in manging
the different mining techniques in order to: (i) direct the search towards hypotheses that are more
relevant to the user’s needs, (ii) add flexibility to the retrieving process to suit the users aims (iii)
offer a myriad of arguments at users fingertips.

After the classifier agent exposed the pertinent contexts to the student, the student picks up
one context among them. The student preference then delegates to the ITS program. The program
exposes the corresponding context, and gives the student the ability to analyze the selected argu-
ment based on a specific chosen scheme. Finally the program negotiates with the student about the
way of analysis through mining techniques to (i) provide constrains that guide the argument analysis
process based on scheme structure and pre-existing arguments, (ii) refine the user’s underlying classi-
fication, (iii) provide an analysis background to the different users, (iv) deepen the understanding of
negotiation, decision making, (v) develop critical and intellectual thinking of students, and improve
the analysis ability.

2.3 Illustrative Example

Suppose the student wants to know anything about Iraq war, so he/she come up with a statement
”the destructive war in Iraq”. First the parser module will divide the statement into tokens {the,
destructive, war, in, Iraq}, such that I1=the, I2=destructive, I3=war, I4=in, I5=Iraq, then access to
the data base through the ODBC connection to compare each token with the lookup table entities
and reduce the number of tokens, after checking the lookup table the tokens will be I1=destructive,
I2=war, I3=Iraq. So the output will be the item sets {destructive, war, Iraq}. Now the classifier should
find the set of raw documents T= {T1,T2,...,Tn }. Assume the conclusion is the search criteria, so
the classifier will use the mining AprioriTid algorithm [10, 5] to make all the possible combination of
the item sets and classify the result depending on the support number for each combination. Firstly,
the algorithm will calculate the support number for each single token, and select the tokens that
have support number greater than minsup, that is a number specified by the student, however in
our case we will take the minsup=1 so any token appears at least once will be considered. Since we
assume that the student choose to search by conclusion then the support number for each token can
be counted by the number of transactions resulted from the following select statements.

Select argument no from Data TBL where
Stru id = 3 and Content like ′%destructive%′;

Select argument no from Data TBL where

Stru id = 3 and Content like ′%war%′;
Select argument no from Data TBL where

struc id = 3 and Content like ′%Iraq%′;

The out put of this step will be the set of ordered pairs L1 = {(destructive, 5), (war, 10),
(Iraq, 20)}, where the ordered pair is of the form (the token, the support number), and the set
A1={argument 801, argument 509,...} which contains the non repetitive arguments (argument no)
that contains these tokens. Secondly, the algorithm consequently builds the super set Ck = apriori gen(Lk−1)
for all possible combinations of the tokens. Fig.6. Shows the first iteration for C2=apriori gen(L1).

Fig. 6. The super set C2 of the singleton token set L1

Then the support number for each combination is checked through the set A1. Suppose that the
support number for the item set ”War Iraq” is 0, which is less than the minsup=1, so this item set
is neglected. The output of this iteration will be L2= {(Destructive war, 3), (Destructive Iraq, 5)},
and the set A2={argument 509,...}. Finally, the last iteration of our example will out put the set
L3={(Destructive war Iraq, 1)} and the set of arguments A3={ argument 509}. Suppose that A3

had more than one argument no, we add function to the algorithm to check the counter argument
of each argument no and order the arguments depending on the possessed counter arguments, such
that the argument that contains more cons is the weakest.

Therefore, the conclusions corresponding to the retrieved arguments are organized, such that the
argument1 is highly relevant to the issue of search rather than argumentn as shown in Fig. 7. When
the student pickup one of the classified output conclusions the ITS will access to the database to
retrieve the corresponding context and then the context is exposed to the student giving him/her the
ability to analyze. Furthermore, the ITS will negotiate with the student partially (step by step hints)

Fig. 7. The argument retrieval output

or totally (compare the student whole analysis with the original one retrieved from the repository)
as discussed in the next section, in order to improve his/her analysis skill.

3 Motivation

In this paper, firstly we introduce a novel approach to retrieve the information using mining tech-
niques based on RADB, which is a highly structured repertoire gathers the argument dataset, such
that all needed information is encoded in an appropriate form. This structure facilitates fast in-
teraction, and enjoys general applicability since it does not require a specialized knowledge. The
idea is to mine the pre-existing arguments in order to (i) direct the search towards hypotheses that
are more relevant to the users needs, even with more than one word in the search statement, (ii)
add flexibility to the retrieving process to suit the users aims (iii) offer a myriad of arguments at
users fingertips (iv) provide an analysis background to the different users. Secondly, we assemble the
different retrieving techniques in a Classifier agent to be merged with an ITS. The agent based in-
telligent tutoring system aims to (i) provide constrains to guide the argument analysis process based
on scheme structure and pre-existing arguments, (ii) refine the users’ underlying classification, (iii)
deepen the understanding of negotiation, decision making, develop critical and intellectual thinking
of students, and improve the analysis ability.

I. Rahwan presents the ArgDf system [1, 6], through which users can create, manipulate, and
query arguments using different argumentation schemes. Comparing ArgDf system to our approach,
both of them sustain creating new arguments based on existing argument schemes. The available
argument schemes are listed, enabling the user to choose the scheme to which the argument belongs.
Details of the selected argumentation scheme are then retrieved from the repository, and the generic
form of the argument is displayed to the user to guide the creation of the premises and conclusion.
For example, querying the ArgDF repository to extract the name of the schemes can be done through
the following RQL query:

SelectScheme, PresumptiveInferenceScheme− hasSchemeName
FromScheme : kb : PresumptiveInferenceScheme kb : hasSchemeName
PresumptiveInferenceScheme− hasSchemeNameusingnamespace
rdf = http : //www.w3.org/1999/02/22− rdf − syntax− ns#,
rdfs = http : //www.w3.org/2000/01/rdf − schema#,
kb = http : //protege.stanford.edu/kb#.

whereas, in our approach, querying the RADB to extract the name of the schemes is done through
the following SQL query:

SELECT SCH Name, ID FROM [Scheme TBL]
Consequently, to extract the details of the selected scheme, the following SQL query is performed:

SELECT Content FROM [Scheme Struct TBL] WHERE
Id of sel scheme = [Scheme Struct TBL].SCH ID.

In addition, the ArgDf system guides the user during the creation process based on the scheme
structure only, the user relies on his efforts and his background to analyze the argument. However,
in our approach, the user is not only guided by the scheme structure but also by crucial hints
devolved through mining techniques. Accordingly, the creation process is restricted by comparing
the contrasting reconstruction of the user’s analysis and the pre-existing one. such restriction helps
in refining the user’s underlying classification.

In the ArgDf system, searching existing arguments is revealed by specifying text in the premises
or the conclusion, as well as the type of relationship between them. Then the user can choose
to filter arguments based on a specific scheme. Whereas, in our approach, searching the existing
arguments is not only done by specifying text in the premises or the conclusion but also by providing
different strategies based on different mining techniques (as explained in subsection 2.2). This method
guarantees the retrieval of the most convenient hypotheses relevant to the subject of search.

4 Conclusions and Future Work

In this paper, we present a novel approach of building a highly structured argument repertoire
(RADB) that uses different mining techniques to support argument analysis, retrieval, and re-usage.
The paper also introduced an educational framework that utilizes the RABD. The proposed structure
aims to: (i) summon and provide a myriad of arguments at the user’s fingertips, (ii) retrieve the
most relevant results to the subject of search, (iii) support the fast interaction between the different
mining techniques and the existing arguments, and (iv) facilitate the interoperability among various
agents/humans. Our attempt enjoys certain advantages when compared to others, especially with
respect to the search of pre-existing arguments. The results obtained are very promising, where
highly relevant and convenient arguments are obtained, especially when the search statement is in
this form: ”the destructive war in Iraq”. Future work mainly concerns with the implementation of
the rest of the framework components.

References

1. S. Modgil I. Rahawan C. Reed et.al. C. Chesnevar, J. McGinnis. Towards an argument interchange
format. In The Knowledge Engineering Review, volume Vol. 00:0, pages 1–25. Cambridge University
Press, 2007.

2. et.al. D. Walton, G. Rowe. Araucaria as a tool for diagramming arguments in teaching and studying
philosophy. In Teaching Philosophy, volume Vol. 29, pages 111–124, 2006.

3. C. Reed G. Rowe and J. katzav. Araucaria: Making up argument. In European Conference on Computing
and Philosophy, 2003.

4. M. Godden and D. Walton. Argument from expert opinion as legal evidence: Critical questions and
admissibility criteria of expert testimony in the american legal system. In Ratio Juris, volume Vol 19,
pages 261–286, 2006.

5. H.Ahonen-Myka. finding all maximal frequent sequences in text. In Proceeding of ICML99 workshop,
1999.

6. F. Zablith I. Rahawan and C. Reed. The foundation for a world wide argument web. In Artificial
Intelligence Conference (AAAI). published in the Artificial Intelligence Journal, April 04, 2007.

7. M. Baker J. Andriessen and D. Suthers. Arguing to learn confronting cognitions in computer-supported
collaborative learning environments. In Kluwer Academic Publishers, Dordrecht/Boston/London, volume
Vol.1, 2003.

8. C. Reed J. Katzav and G. Rowe. Argument research corpus. In M.-P. Huget (ed.), Communication
in Multiagent Systems,Lecture Notes in Computer Science,Springer Verlag, Berlin, Germany, volume
Vol.2650, pages pp. 269–283, 2003.

9. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In D. Gabbay and F.
Guenther, editors, Handbook of Philosophical Logic, pages 219–318. Kluwer, 2002.

10. R. Srikant R. Agrawal. Fast algorithms for mining rules. In Proceeding of the 20th VLDB Conference
Santiago, Chile, 1994.

11. I. Rahawan and P.V. Sakeer. Representing and querying arguments on semantic web. In Computational
Models of Argument, P.E. Dunne and T.J.M. Bench-Capon (Eds.), IOS Press, 2006.

12. C. Reed and G. Rowe. Araucaria: Software for argument analysis, diagramming and representation. In
International Journal on Artificial Intelligence Tools, volume Vol.13, page pp.983, 2004.

13. R.R. Muntz. et.al. Y. Chi. Frequent subtree mining-an overview. In Fundamenta Informaticae, pages
pp.1001–1038, 2001.

