

Mining Data from an Automated Grading and Testing
System by Adding Rich Reporting Capabilities

Anthony Allevato, Matthew Thornton, Stephen H. Edwards, and Manuel A. Pérez-Quiñones

{allevato, thorntom}@vt.edu, {edwards, perez}@cs.vt.edu
Department of Computer Science, Virginia Tech

Abstract. Programs that perform automated assignment grading can generate a
great deal of meaningful data not only for the student, but for the instructor as
well. Such tools are often used in computer science courses to assess student
programming work. In the process of grading, a large amount of intermediate
information is gathered. However, in most cases this information is not used
beyond assigning scores, so the potential of learning more about the course is
lost. At the same time, continuous collection of data over a large number of
submissions across many courses presents an interesting but untapped resource
for educational data mining. One solution to this problem is to implement a
reporting tool for making use of this intermediate data to create meaningful
interpretations. This paper describes how an automated grading system, Web-
CAT, has been extended to provide a reporting mechanism that uses the
intermediate data that is gathered during assessment of students’ programs. Our
implementation of the reporting tool makes use of the Business Information
Reporting Tool (BIRT) developed for the Eclipse IDE.

1 Introduction

In computer science or information technology courses where students learn to write
programs, many assignments focus on this skill. How do student grades improve as a
function of how close they submit their assignment to the due date? Is there any
correlation between the numbers of test cases that a student writes versus the grade they
receive? Is there a statistically significant difference in grades from one assignment to the
next? These are typical of questions that instructors may ask in analyzing the success of
their lesson plans. Instructors that use some form of automated grading or testing system
to help assess student work are at a significant advantage. Such systems should be able
to help answer these questions because they provide a great deal of feedback to the
instructor about student grades and the assessment of individual assignments.

Unfortunately, such applications usually do not provide a useful way of analyzing this
information. Web-CAT, an automated testing system [3], collects a large amount of
intermediate data when assessing student projects. Prior to our work outlined here, these
data were effectively “trapped” within the tool and were not publicly accessible, thus
preventing any analysis. Making the data accessible would require an analysis and
reporting tool that would allow complex reports to be generated.

The Business Information Reporting Tools (BIRT) project is an open-source reporting
engine based on the Eclipse IDE [2]. BIRT makes it possible to take raw data from some
data source and render it using tables, crosstabs, and a number of chart types. It can then
generate reports in several formats including PDF and HTML. BIRT is also easily
extended through the Eclipse plug-in and extension point paradigms.

Integrating BIRT into Web-CAT provides a powerful resource for data analysis for a
student, an assignment, or a course overall. Unfortunately, the integration was not as
simple as connecting a data store from Web-CAT to BIRT and generating reports,
because data from Web-CAT comes from several disparate sources. It was necessary to
create a “bridge” between the Web-CAT data store and the BIRT reporting engine.
Additionally, tight integration into the existing Web-CAT user interface was also desired.

This paper details our solution to the problem of analyzing the large volume of data that
is acquired in assessing student assignments using an automated grading system. We will
look at previous work done in analysis of student assessment data, describe the
requirements of our system, and discuss the highlights of its design and implementation.
Finally, we will show examples of some in-depth analysis that is now possible because of
these enhancements and describe future directions for this tool and its potential to aid in
student, assignment, and course assessment from the instructor’s perspective.

2 Background and Related Work

Web-CAT is a web-based system that supports the electronic submission and automated
grading of programming assignments [3]. In addition to traditional models of automated
grading, it also supports test-driven development by evaluating the correctness and
thoroughness of unit tests that students submit with their solution. When students submit,
they receive a report detailing their performance on the assignment. This report includes a
score derived from such sources as static analysis and style-checking tools, code
coverage monitoring tools, and the results of executing reference tests that the instructor
provides. Students can also view visualizations of their past performance and their
standing among other students [5]. However, a great deal of the raw data that is used to
derive these final scores is left inaccessible, buried in internal databases and other file
structures. Much of this data could potentially be of use to an instructor who wishes to
assess either the abilities of students based on other criteria than their final cumulative
scores, or the effectiveness of an assignment by examining how students at different skill
and knowledge levels were able to perform on a particular aspect of the assignment.

Marmoset, developed by Spacco, Strecker, et al., is a system that performs analysis of
student submissions beyond the computation of a final score for grading purposes [11].
Its notable features include the ability to capture snapshots of a student’s progress on an
assignment as the solution is developed over time, and the implementation of an
exception checker that can collect data about common failures that occur in student code.
Our approach differs from Marmoset’s in the inclusion of a report generation engine,
user-defined reports over the entire data model (limited by role-based access control), a
WYSIWYG report designer with live data preview capabilities, and support for extending
the data model with user-written data collectors via Web-CAT’s plug-in mechanism.

Mierle, Laven, et al. investigate mining CVS repositories used to store students’ code
during development [8]. The authors analyze features such as the amount of code written,
the extent of changes made between each commit, and the length of time between those
commits. They attempt to draw a correlation between these metrics and a student’s
performance on an assignment.

While the design and goals of the work done by these two groups may differ from ours, it
does give some insight into the type of data that would be useful to make available
through the reporting engine so that Web-CAT can support similar types of analyses.

3 Design and Implementation

The first step to designing this project was to select the reporting engine that would be
integrated into Web-CAT. The primary requirements were that it be open-source and
implemented in Java. The three major candidates were JasperReports [6], JFreeReport
[10], and BIRT. After examining each in detail, we chose BIRT for its extensibility,
customizability, its rich user-friendly report designer, and other desirable features such as
JavaScript support and the ability to generate interactive charts in SVG format.

3.1 Exposing the Web-CAT Data Store

As described earlier, Web-CAT collects a large amount of data that would be useful to
compile into a report. A database contains information about assignments such as their
names, descriptions, due dates and scoring guidelines. Statistics computed during the
evaluation of a student’s submission by grading plug-ins are written to a file that holds
key/value pairs for properties such as code size, code coverage, execution time, test
results, run-time errors, and static analysis results. Thus, it is not adequate simply to
connect the reporting engine to the underlying SQL database using one of the standard
BIRT data sources, because much of the information is not stored there.

Given this disparity in data storage, it is essential that we provide a uniform method for
the reporting engine to query the data from Web-CAT. Further, since Web-CAT’s plug-
in-based architecture allows instructors to add their own plug-ins that collect additional
data, a method with built-in extensibility is critical. The user designing the report should
not have to be concerned that the data of interest comes from a database or from a field in
a grading properties file. We accomplish this by providing our own extensions to BIRT
that define a custom data model that accesses data in a Web-CAT-friendly manner. These
extensions integrate fully with the BIRT report designer so that end-users can create
report templates for Web-CAT as easily as they would for any conventional data source.

Web-CAT is built on top of Apple’s WebObjects framework, which simplified the
implementation. Each table in Web-CAT’s database is shadowed by a Java class with
accessor methods corresponding to the columns in the table. These classes can also be
extended to compute dynamic properties as well. Then, values can be identified using a
“key-value coding” notation, which uses dot-separated key paths to evaluate properties,
similar to how JavaBeans properties are denoted. For example, submission.user.user-
Name would call the getUser() method on the submission variable, and then the
getUserName() method is called on that result. By adopting this notation when
defining reports, we simplify the way that data is captured and reap the benefits from the
WebObjects model, so that properties can be accessed in the same manner regardless of
whether they are a database-backed property or one that is obtained from another source.

3.2 Extending BIRT to Communicate with Web-CAT

BIRT divides its data model into a two-tiered hierarchy. At the top level are “data
sources.” BIRT itself includes support for a handful of data sources, ranging from XML
and CSV files to JavaScript and JDBC connections. Properties associated with the data
source might be the path to a data file (in the case of XML or CSV), or the server name
and login credentials (for JDBC). Then, in a report template, each instance of a data
source contains one or more “data sets.” A data set represents a query into that data
source and defines the columns that will be retrieved for each row of the result set.

None of BIRT’s built-in data sources are appropriate for interfacing with the Web-CAT
object model, so we have extended it by adding a Web-CAT data source and data sets. In
this case, the data source is simply a representation of the instance of Web-CAT under
which BIRT is running, and has no associated properties of its own. A Web-CAT data
set has two principal properties. The first is the type of object in the Web-CAT object
model that it expects to receive. Each object in this set will correspond to a row in the
result set. Second, the data set defines a list of columns for the report. Each column has
three parts: a symbolic name that will be used to refer to it elsewhere in the report, the
data type of the column, and the key path to evaluate to retrieve the value for that
column. These key paths are evaluated using objects of the data set’s object type as their
root; in other words, if x is an object being fed into the report and key.path is one of the
column key paths, then the result is the evaluation of x.key.path.

We do not limit the user to simple key paths, however. A column expression can be
written in OGNL [1], which is syntactically a proper superset of standard key paths that
provides additional features such as enhanced list operations and pseudo-lambda
expressions. This added flexibility can be useful when it is necessary to perform
additional small calculations, such as aggregations, for which a simple key path would be
insufficient. In addition, BIRT uses the Rhino [9] implementation of JavaScript so that
scripts can be written in a report to transform the data further as necessary.

3.3 Maintaining a Library of Report Templates

In order for users to gain the most benefit from the Web-CAT reporting engine, they
should be encouraged to share the report templates that they create so that other
instructors can use the templates to generate reports for their own classes. A similar
model is currently in use for Web-CAT’s grading plug-ins, which can either be private to
the user who created them or published for anyone’s use, and are annotated with
metadata that provides human-readable names, descriptions, and parameter information.

We mimic this design by providing a template library to which users can upload the
report templates they create. Rather than designing a report with a fixed course,
assignment, or other query in mind, the templates are constructed so that they process a
set of a particular type of objects in the Web-CAT object model (such as submissions);
then, users can visualize data from a course or assignment of their choosing. When a
report template is chosen for generation, Web-CAT will ask the user to specify a query
that will be used to determine which objects are passed to the report.

3.4 The Life Cycle of a Report

A report on Web-CAT goes through three phases: the report template, the intermediate
report document, and the final rendered report. The report template (called a “report
design” by BIRT), as one would expect, contains the data set definitions, layout, charts,
and tables that make up the report. Report templates can be produced by BIRT’s
graphical report designer application. Once designed, the template can then be used by
many instructors to create reports for different courses or assignments.

When an instructor requests a report using a given report template, BIRT generates an
intermediate file that it refers to as the “report document.” This is an internal
representation of the report that contains all of the data retrieved from the data source, but
that is not yet rendered in a human-readable format. Our design caches these report
documents internally for later use.

In the final phase, the intermediate document is rendered into one of several formats and
presented to the user. These formats include HTML, PDF, and Microsoft Excel. Support
also is provided to extract the data from a report into CSV files to be analyzed using an
external tool if desired.

There are two motivations for caching the intermediate report document as opposed to
running the generation and rendering phases as a single task. First, the rendering phase of
the report typically requires only a negligible amount of time when compared to the
generation phase, which can require seconds or even minutes to complete, depending on
the nature of the data being processed. If the user wishes to re-render the report in a
different format, either immediately after it is generated or later, starting from the cached
report document greatly speeds up this process. Second, a report generated at a particular
time should represent a snapshot of the data on Web-CAT at that time. If the report were
regenerated each time it was viewed, it would diminish the usefulness of using the reports
for comparative analysis.

4 Data Mining Applications

Prior to the implementation of the reporting engine, there were many questions regarding
student performance and habits about which we could only make educated guesses based
on anecdotal evidence. With the entire data store of Web-CAT now exposed, we are in a
much better position to answer these questions with quantifiable evidence. In the
sections below, we describe some of these questions, examine how the reporter can be
used to mine data from an assignment, and discuss whether the results either reinforce or
challenge our original assumptions. All of the reports shown below were generated with
data mined from the same assignment in a single course unless indicated otherwise.

4.1 Number of Submissions versus Final Score

Do students who make more submissions receive higher scores than those who make
fewer? Web-CAT allows students to make multiple submissions before the deadline, so
that students can get feedback early and participate in more feedback/revise/resubmit

cycles. Students who make few submissions could be either advanced students who
quickly arrive at the correct solution, or poorer students who start late and give up
quickly. Students who make an excessive number of submissions may not be thinking
about the problem critically, and may just be spinning their wheels.

Figure 1 shows a scatter plot where the horizontal axis is the total number of submissions
that a student made and the vertical axis is the final score that each student received on
the last submission. Students who made four or fewer submissions scored poorly.
Beyond that, grades improved dramatically. Those who made many more submissions
were also able to achieve a high score with which they were satisfied. There is a clear
partitioning of the student scores at 71, which separates students who passed the
assignment (a letter grade of C or better) and those who failed. A chi-square test of
number of submissions between the two groups indicates a significant difference (df = 1,
chi-square = 7.6, p = 0.006, α = 0.05), with students failing the assignment making fewer
submissions (a mean of 9.5, compared with 18.3 for students who passed).

4.2 Code Complexity versus Final Score

Is there a correlation between the complexity of a student’s submission and the score
received? Here, we have used McCabe’s cyclomatic complexity measure [7], although
other measures are possible. It is even possible for instructors to devise their own
measures and write a Web-CAT plug-in to collect custom data as part of the grading
process, which then becomes directly accessible in custom reports.

We hypothesize that a graph of complexity vs. score would resemble a bell curve, where
low-complexity submissions indicate a student failed to write an adequate solution, while
excessively complex solutions indicate a student who may have written too much code
without a proper understanding of the problem, perhaps using a “band-aid” approach.

Figure 2 shows a scatter plot where the horizontal axis is the cyclomatic complexity of
the student’s final submission and the vertical axis is the final score. Although outliers on
both ends tended to score poorly, no clear bell shape emerges and low-scoring
submissions are distributed throughout the range. A chi-square test fails to show any
significant difference between students who achieved passing scores and those that did

Figure 1. Figure 2.

not. This result suggests re-running the report over multiple assignments—possibly over
multiple semesters—might provide a better visualization of any trend that is present.

4.3 Early versus Late Testing: Student Habits

When do students begin writing unit tests for the components in their solutions—
incrementally as they write the code, or only after writing the majority of their code?
This question interests us because we require students to test thoroughly the code that
they write in our CS1 and CS2 courses. To answer this, we can examine the submissions
made on each day as an assignment deadline approaches and examine the total number of
lines of test code among them versus lines of non-test code.

Figures 3 and 4 show the results. Figure 3 is a line graph that shows, for all submissions
occurring in each 12-hour period, the percentage of all code submitted that was unit test
code. Figure 4 is a more detailed breakdown of this same information, displaying the
minimum, maximum, and average number of lines of test code submitted in each 12-hour
block, as well as the maximum number of lines of all code submitted for comparison.
Although there is a slight dip approximately five days before the assignment is due—
caused by one student, as indicated in Figure 4—these two plots give a strong indication
that students overall are testing their work incrementally, rather than waiting until they
have finished their solutions before beginning to write their own tests.

We can also examine assignments at the beginning and end of a course offering to see if
testing habits improved as time went on. The chart in Figure 3 reflects the final
assignment in a course. Figure 5 shows a similar chart for the first assignment given in
the same course. The plot for the first assignment indicates that students were writing
tests incrementally at the start of the course, as the instructors intended.

4.4 Early versus Late Testing: Affects on Final Score

Do students who begin testing their code early perform better on the assignment overall
than those who put off testing until much later? This question arises when instructors
consider encouraging students to use test-driven development (TDD), a strategy where
they incrementally write tests along with their solution, writing each test just before
completing the corresponding part of their implementation. Anecdotal evidence might

Figure 3. Figure 4.

suggest that students score higher if they test early, and experimental evidence indicates
that if they are graded on how well they test, they produce significantly fewer bugs and
score higher [3].

To answer this question, we first need to be able to quantify how early a student began
writing tests. For simplicity, we will define this as the percentage of test code in their first
submission. We rationalize this choice by stating that students should be doing their own
testing as they write their solution piece by piece, even before having a sufficiently
complete attempt to submit for grading. Students who do not start writing tests early will
have a low percentage, while students who do should have a higher one.

A number of other more detailed metrics could be explored instead. Rather than
examining the percentage of test code, one could combine this in some fashion with the
percentage of test code that was actually executed according to code coverage tools, the
degree of code coverage achieved by executing the tests, or a time-based approach
determining when, if at all, a student passes a pre-defined threshold of testing.

Figure 6 shows a scatter plot where the horizontal axis is the percentage of test code in
each student’s first submission and the vertical axis is the score received on his or her
final submission. Because the earliness of testing is based on the percentage of test code
found, higher numbers toward the right indicate earlier testing.

A chi-square test between students who achieved passing scores and those that did not
fails to show any significant difference in the percentage of test code in the first
submission. However, the plot shows an interesting gap in the percentage of test code
around 25-30%. Indeed, using the likelihood-ratio chi-square to produce an optimum
partitioning by percentage of test code leads to a split point of 25%. We can consider
students below this threshold as those who “test less” early, and those above the threshold
as those who “test more” early. One possible explanation is that students with greater
programming experience—who also are more resistant to test-first development
practices, and end up in the “test less” group—manage to do well on assignments at this
level. Another is that students who did little testing early quickly learned that it was to
their advantage to do more and improved on this before their final submission. We could
delve further into either theory by generating another report with the progression of

Figure 5. Figure 6.

percentage of test code from the first submission to final submission, breaking it down by
students who started with little testing vs. students who started with more.

5 Future Work

We realize that many instructors would prefer to make use of an existing set of report
templates rather than undertake the task of creating their own. While we cannot predict
the exact needs of everyone who uses Web-CAT, it behooves us as the system designers
to develop as comprehensive a library of templates as possible so that other instructors
can immediately benefit from the system. As is the case with Web-CAT’s grading plug-
ins, we can make use of Web-CAT’s auto-updating feature to distribute new or revised
report templates to users as we would distribute system component updates.

At the same time, many of the reports discussed in Section 4 required significant
JavaScript code and OGNL expressions to be written into the data set descriptions. BIRT
provides these tools for creating reports that are more intelligent, and they were used here
to transform the data in a way that was appropriate for the view that we desired.
However, using these features necessarily increases the learning curve for new users. We
can simplify this either by extending the Web-CAT data model as deemed necessary, or
by providing utility code to assist with common operations and transformations, either in
the form of JavaScript “snippets” that can be dropped into a report or server-side Java
code that can be called from within a report.

By doing this, common data mining techniques such as regression, classification with
decision-trees, and others could be embedded so that a user could integrate their results
into a report more easily. Even without these more advanced features, however, it is easy
under the current system to export various cuts and views of the Web-CAT data store into
CSV files that could be analyzed by more specific data mining tools off-line.

Another topic that the reporting tool opens up is the possibility of doing predictive
analysis based on the data mined from Web-CAT. Instructors could use data about past
assignments to predict future performance, going as far as breaking down an assignment
into specific problem areas and identifying students who had particular trouble with
certain concepts. These ideas would benefit further from the ability to set up a report to
be automatically generated on a recurring schedule. Trends in data could be predicted in
one run of the report and then compared to the actual outcome of the next run. E-mail
notifications to instructors or even to students could be used to send alerts of at-risk
situations, while students are still developing their solutions before an assignment is due.

6 Conclusions

This paper has presented a solution to the issue of accessing and analyzing the large
amount of data that is generated from an automated grading system. We have discussed
the design and integration of a report generator with an existing automated testing
system, Web-CAT, and shown how complex reports can be used to mine data from
student coursework to answer deep questions about their performance and habits.

As of this writing, the implementation of the reporting engine was only recently
completed. As such, no formal evaluation of the system has yet been undertaken, but the
potential for this type of system should be apparent. Instructors and computer science
researchers now have the ability to both generate simple grade reports and distributions,
as well as perform empirical analysis on their coursework to answer questions as
complicated as those described above. The answers to these types of questions may aid
an instructor in improving their curriculum.

Due to the flexibility of both Web-CAT and BIRT, there are also potential opportunities
outside the realm of computer science education. Web-CAT is in essence a large plug-in
manager and integrating BIRT extends that idea to include report templates. Plug-ins can
be devised that would allow for any type of analysis on code, and the results of that
process could then be rendered for study. An example might be an in-depth study of how
a department in a corporation complies with the company’s coding standards. An eval-
uation tool of this sort would be beneficial in any case where statistical data is desired out
of a large collection of source code. Further, applying these ideas to general-purpose
course management systems could lead to similar capabilities for other disciplines.

References

[1] Blanshard, L. and Davidson, D. OGNL: Object-Graph Navigation Language,
2008. Available at: <http://www.ognl.org>

[2] The Eclipse Foundation. BIRT Project: Business Intelligence and Reporting
Tools, 2008. Available at: <http://www.eclipse.org/birt/ >

[3] Edwards, S. H. Improving student performance by evaluating how well students
test their own programs, Journal of Educational Resources in Computing, 3(3): 1-
24 (2003).

[4] Edwards, S.H. Web-CAT Wiki, 2008. Available at: <http://web-cat.org>
[5] Edwards, S. H., M. Pérez-Quiñones, M. Phillips and J. RajKumar. Graphing

Performance on Programming Assignments to Improve Student Understanding,
Proceedings of the International Conference on Engineering Education, 2006.

[6] JasperSoft Corporation. JasperReports, 2008. Available at:
<http://jasperreports.sourceforge.net/>

[7] McCabe, T. A Complexity Measure, IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, 1976, pp. 308-320.

[8] Mierle, K., K. Laven, S. Roweis and G. Wilson. Mining Student CVS
Repositories for Performance Indicators, 2005 International Workshop on Mining
Software Repositories, ACM, 2005, pp. 1-5.

[9] Mozilla.org. Rhino: JavaScript for Java, 2008. Available at:
<http://www.mozilla.org/rhino/>

[10] Object Refinery Limited. JFreeReport, 2008. Available at:
<http://www.jfree.org/jfreereport/index.php>

[11] Spacco, J., J. Strecker, D. Hovemeyer and W. Pugh. Software Repository Mining
with Marmoset: An Automated Programming Project Snapshot and Testing
System, 2005 International Workshop on Mining Software Repositories, ACM,
2005, pp. 1-5.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

