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Abstract. Multi skill scenarios are common place in real world problems and Intelligent 
Tutoring System questions alike, however, system designers have often relied on ad-hoc 

methods for modeling the composition of multiple skills. There are two common approaches 
to determining the probability of correct for a multi skill question: a conjunctive approach, 

which assumes that all skills must be known or a compensatory approach which assumes that 

the strength of one skill can compensate for the weakness of another skill. We compare the 

conjunctive model to a learned compositional function and find that the learned function quite 
nearly converges to the conjunctive function. We can confidently report that system designers 

can implement the AND gate to represent the composition function quite accurately. 

Cognitive modelers may be interested in the small compensatory effect that is present. We 

use a static Bayesian network to model the two hypotheses and use the expectation-
maximization algorithm to learn the parameters of the models. 

1 Introduction 

Real world problems often involve multiple skills. It is common to have a 

question in an Intelligent Tutoring System (ITS) that involves more than one skill 

as well. It is assumed that multi skill questions are harder but how much harder 

and is the composition of skills accurately modeled by an AND gate or is a more 

complex function required? 
 

 There are two general approaches that have been used in ITS to model how 

skills compose; one is a conjunctive (AND) approach which multiplies the 

probabilities that the student knows the skills together to deduce the probability 

that the student has the required knowledge to answer the question correctly. One 

example is the Andes physics tutor [4] which uses a leaky-AND assumption to 

model composition. The other approach is compensatory (OR/additive). This 

approach assumes that a skill with high probability of knowledge can compensate 

for a lower probability of knowledge of the other skill(s) involved and thus 

constitute the required knowledge to answer the question correct. Many varieties 

of the compensatory approach have been applied in practice including a mixed-

effect analysis of tutor data [5] where skills with the lowest probability were used 

to represent the problem’s difficulty. Other investigators have used a type of 

additive approach with learning factors analysis [3] and with a linear logistic test 

model [1] that found the additive approach to be inadequate for modeling 

difficulty using a similar dataset to ours. This paper will investigate how difficulty 

changes with the number of required skills and address which function is most 

appropriate for modeling the composition of skills at least in the context of our 

dataset. Previous work [6], in which the phrase “composition effect” was first 



coined, focused on a different aspect of problem difficulty and found that 

answering a multi skill question correctly was harder than answering two single 

skill questions correctly.  

1.1 About the ASSISTment tutoring system 

ASSISTment is a web based tutoring and assessment system for 6
th

-10
th

 grade 

math. The tutor started in 2004 in only a few 8
th

 grade math classrooms and, in 

2008,  is now used by 300-500 students per day. The items in the tutor are all 

based upon publically released state test problems from the Massachusetts 

Comprehensive Assessment System (MCAS). 

1.2 About the Dataset 

Our dataset was from logged student use of the ASSISTment system during the 

2005-2006 school year in which 8
th

 grade math students ages 13-14 answered 

questions on the tutor two or three times per month at their school’s computer lab. 

The students were given randomly chosen problems from a pool of around 300. 

The random selection of problems gave us a random sampling of skill data 

throughout the year.  

 

Our dataset contained 441 students with 46 average responses per student. Only 

a student’s first response to a question was considered. The number of single skill 

questions was 184 with 62 double skill questions and 16 triple skill questions. The 

majority of questions are text entry while the others are multiple-choice. We 

would like to note that skills were tagged to questions by subject matter experts 

from a skill set of 106 [10]. However, the number of skills that have data points is 

84. Table 1 shows the attributes we have for each of the question responses and an 

example of what the response data looks like. 
 

Table 1. Sample of the question response dataset 

UserID QuestionID Skill Tags 
Correct on first 

attempt 
Timestamp 

1234 5293 
Equation-solving, 

Congruence, Perimeter 
0 

13-OCT-05 
12:20.53 

1234 5693 Congruence 1 
13-OCT-05 

12:27.20 

1234 6755 Pythagorean Theorem 0 
13-OCT-05 

12:33.57 

1.3 Bayesian Networks 

We used a static Bayesian model to represent skill tagging to question nodes and 

to make inferences on the probability of answering a given question correct or 

incorrect. Bayesian networks [9] is a powerful machine learning method that we 

used for making posterior inferences based on binary response data; 1 for correct 



0 for incorrect. The EM algorithm [2] can be used with Bayesian networks to 

learn the priors of latent variables and the conditional probability tables (CPT) of 

random variable child nodes. Exact inference with Kevin Murphy’s Bayes Net 

Toolkit for MATLAB was used with EM to learn the parameters of the networks. 
 

    Inferring the probability a student will answer a question correctly (Q=correct) 

is a function of the believed prior on the skill(s) associates with the item 

(S=known) together with the guess and slip parameters of the question. The 

equation is shown below: 

 

P(Q=correct) = (1-P(S=know))  guess + P(S=know)  (1-slip) (1) 

 

 A guess parameter dictates the probability that the student will get an item correct 

even if she does not have the required knowledge. A slip parameter dictates the 

probability that the student will get an item incorrect even if she has the required 

knowledge. Learning the general parameters of single and multi skill questions 

will tell us if questions with more skills are harder to guess.  

2 The Conjunctive Model 

The AND Gate Conjunctive model is the most common approach to skill 

composition in ITS. The principle behind it is that all skills involved must be 

known in order to answer the question correctly. The topology of this model is 

similar to a deterministic input noisy “AND” (DINA) model [7] except that our 

AND has no noise (no p-fail). The Bayesian belief network is represented by the 

directed acyclic graph in Figure 2.  
 

 
 

Fig. 2 Directed acyclic graph representing the AND gate Bayesian topology 

 

The network consists of three layers of nodes with equivalence classes used to 

share conditional probability tables among nodes. This lets us learn a generalized 



guess/slip for all nodes of a given equivalence class instead of a parameter per 

node, which could not be accurately learned given the size of our dataset and 

would also not answer the research question of how multi skill questions differ 

from single skill questions. The first layer consists of latent skill nodes. All the 

skill nodes share a single equivalence class, this was done to simplify the EM 

procedure. The equivalence class learns a single prior for all skills but does not 

constrain the individual skill performance estimations from differing. The second 

layer consists of the AND gates which assert that all parent skills must be known 

in order for the child question to be answered correctly. The last layer consists of 

the question nodes. All single skill questions are grouped by an equivalence class. 

All double skill and triple skill questions have their own equivalence class as well. 

We will eventually be learning a total of three sets of guess/slip values and a 

prior. 

2.1 Methodology 

The way in which we will approach the research question “how much harder 

are multi skill questions” is by learning the conditional probability tables of the 

Bayesian network. By learning the parameters of our model we can observe how 

skill knowledge determines the probability of correct for a given question. How 

guess and slip vary with the number of skills involved is one way of investigating 

the composition effect. To learn parameters in the AND model we chose to learn 

the single skill guess and slip first. By learning these parameters first we can 

establish a baseline assumption for question guess and slip that is gathered from 

single skill question data that does not introduce the complex issue of credit-

blame that comes in to effect with multi skill questions. The skills’ prior equiv 

class was set at 0.50 and the starting value of the single skill equiv class was set at 

ad-hoc values; 0.15 guess and 0.10 slip that have been used in previous 

conjunctive model work [8]. After the guess and slip parameters have been 

learned for the single skill equivalence class we move on to learning the double 

skill and triple skill equivalence classes at once. The single skill parameter values 

are locked in place and the prior is reset again to 0.50 before the second EM 

learning begins. After this second step completes we now have three sets of guess 

and slip values as well as a prior for the skills. 

2.2 Results 

The results from the AND model parameter learning shows that the probability of 

guess decreases linearly as the number of skills increases; from a 24.24% guess 

with a single skill questions down to a 16.06% guess with a 3 skill question as 

shown in Figure 3. Surprisingly the slip rate, or probability of making a mistake, 

also goes down as the number of skills increase. This suggests that while multi 

skill problems are more difficult to guess, they are also more difficult to slip on. 



 
Fig. 3 Results of AND model parameter learning 

 

The difficulty of a problem can be described by the probability of answering 

the question correctly. However, the probability of answering a question correctly 

is dependent on the probability of knowing the skill or skills involved. Figure 4 

shows how problem difficulty differs with skill knowledge for single, double and 

triple skill questions. Also note that the guess values from Figure 3 are the 

intercepts of the left most vertical axis in Figure 4 and the slip values are the right 

most vertical intercepts. 

 

Data for the Figure 4 graph was generated by setting the probability of all skill 

nodes to zero and then asking the Bayes net to infer the posterior probability of 

correct for a single, double and triple skill question and recording the results. All 

skill nodes were then incremented by 0.01 and the steps were repeated up to a 

probability of 1. 
     

 
Fig. 4 Comparison of the difficulty of single, double and triple skill questions 



3 The Learned Compositional Model  

The learned compositional model topology looks similar to the AND model 

except that there is no layer of gate nodes and the skills are connected directly to 

the question nodes as seen in Figure 5.  

 

 
 

Fig. 5 Directed acyclic graph representing the compositional Bayesian topology 
 

The fundamental difference between the AND model and the learned 

compositional mode is that only three parameters, a guess and slip and prior, are 

learned in the AND model since the composition function was captured by the 

AND gates + guess/slip. In the learned compositional model, however, the 

composition function and the guess/slip parameters are captured in one complex 

CPT. A guess and slip value will still be learned for the single skill equivalence 

class since there is no composition with a single skill. However, four parameters 

will be learned for the double skill equivalence class and eight parameters for the 

triple skill class. The increase in parameters is due to the CPT needing to expand 

with the increased number of parent nodes. Example CPTs for single and double 

skill questions are shown in Figure 6.  

 

S1 P(Q=F) P(Q=T) 
 

F 

T 
 

0.85 0.15 

0.10 0.90 
  

S1 S2 
 

P(Q=F) P(Q=T) 
 

F F 

T F 

F T 

T T 
 

0.85 0.15 

0.80 0.20 

0.78 0.22 

0.10 0.90 
  

 

Fig. 6 Example CPTs for single and double skill questions 
 

In both CPTs of Figure 6 the 0.15 represents the guess parameter which is the 

probability the question is answered correctly (P(Q=T)) given the skill is not 

known (S1=F); 0.85 is simply the complement of the guess parameter.  Observe 

that in the double skill CPT there is a row where S1=T and S2=F and another row 

where S1=F and S2=T. Why might the P(Q=T) of these two rows differ? Because, 

for example, S1 could represent the “harder skill”. If the composition function is 

compensatory, knowledge of only the more difficult skill could results in a 

P(Q=T) of greater than 0.50 while knowledge of only the easier skill could result 



in a P(Q=T) of less than 0.50. In the next section we describe how the network 

topology was organized to capture the notion of a “harder” skill. We found that 

knowing the harder skill is not much better than knowing the easier skill, 

suggesting against a compensatory compositional function. 

3.1 Methodology 

The methodology for learning parameters in the learned compositional model 

was very similar to the AND model with the exception of an initial step required 

to order the skill nodes. This ordering was done to capture relative difficulty 

among skills so that a compensatory function, which requires the notion of skill 

difficulty, could potentially be learned. The default order of skills in the network 

was alphabetical. Because this ordering has no substantive meaning we decided to 

order the skills by difficulty with the most difficult skill appearing first (node 1) 

and the least difficult appearing last (node 106). We used the metric of skill prior 

to represent the difficulty of a skill. In order to attain the priors on all the skills we 

let a separate prior be learned for each of the 106 skills during an initial parameter 

learning of single skill questions. This step was done solely to get a skill order. 

The learned guess/slip values were discarded. After the skill priors were attained, 

the network was reordered and the single equivalence class for skill priors was 

reestablished before the “real” first phase of EM parameter learning was run. This 

reordering gave extra power to the results and allowed us to ask composition 

questions such as, “does knowing only the harder skill increase the probability of 

answering a question correctly over knowing only the easier skill?”  

3.2 Results 

Results of the compositional model parameter learning indicate that the learned 

composition function is conjunctive. Evidence against a compensatory function 

can be drawn from Table 2 which shows that knowing one skill only slightly 

increases the probability of answering a double skill question correctly over 

knowing no skills. 
 

Table 2. Learned double skill CPT for the learned compositional model 

Harder skill Easier skill 
 

P(Q=F) P(Q=T) 
 

F F 

T F 

F T 

T T 
 

0.83 0.17 

0.77 0.23 

0.78 0.22 

0.06 0.94 
  

    The table also shows that knowing only the harder skill does not help 

significantly over only knowing the weak skill. For double skill questions the 

learned guess is 0.17 and 0.06 slip, nearly the same as the AND model. To further 

compare and verify the learned compositional model’s similarity to the AND 

model we generated a graph similar to Figure 4.  



 
Fig. 7 Comparison of the AND model and learned compositional model 

 

Figure 7, above, shows that the lines from the AND model and learned 

compositional model overlap. The similarity of the behavior of these functions, 

arrived at through two different analytic approaches, favors the AND gate as 

being a very close approximation to the composition function.  

3.3 Further analysis: deriving the composition function 

The values in Table 2, estimated by our model, determine how likely a student is 

to respond correctly to a multi-skill question on the basis of her knowledge of the 

two associated skills.  For example, a student who knows the harder skill but does 

not know the easier skill has a 23% chance of responding correctly to the 

question.  These parameters values are affected by two components:  the effect of 

composition and the likelihood of slipping or guessing.  Unfortunately, it is 

impossible to simultaneously model both effects separately since the model is 

underdetermined.  Both the guess/slip and composition effects are latent, and 

therefore during the parameter estimation phase of EM there are an infinite 

number of simultaneous solutions.  Therefore, we will reuse the slip and guess 

values from the AND model (guess=0.1923 and slip=0.0639, from Figure 3) as 

estimates of the effect of slipping and guessing.  We then partial those out 

(analogous to a partial correlation) of the table by using the following equation:  

P(correct) = (1-P(known)) * guess + P(known) * (1-slip). In this formula, 

P(known) refers to the probability the student knows how to solve the problem 

accounting for the composition effect; P(correct) is the value in Table 2, and slip 

and guess are 0.1923 and 0.0639, respectively.  By solving for P(known), we can 

compute the effect of composition:  that is, when a student knows neither, one or 

both of the two skills, how much effective knowledge does she bring to bear on 

the problem?  Solving for P(known) for each entry in Table 2 yields Table 3. 



Table 3. Compensatory model with guess/slip factored out 

P(known) Hard skill is not known Hard skill is known 

Easy skill not known -0.028 0.055 

Easy skill is known  0.045 1.004 

Table 3 represents the composition function.  Although some of the values are 

impossible in terms of being probabilities, they are only (close) approximations 

since we were forced to use slip and guess values from a related analysis.  In spite 

of these shortcomings, Table 3 is quite interpretable:  it is extremely similar to an 

AND gate. When a student knows neither skill she has, effectively, zero 

knowledge. When she knows both skills her knowledge is approximately 1. When 

she only knows 1 of the skills, she has a slight amount of knowledge, but still 

fairly close to 0. Replacing these numbers with an AND gate would produce 

largely similar results, as can be seen in Figures 4, 5 and 6. Therefore, 

composition is well-modeled as an AND gate.  Furthermore, we see no evidence 

that it is necessary to use a leaky-AND gate [4] to model composition. 

4 Contributions 

We have shown that the more skills involved in a question the harder it is to guess 

the correct answer. We have also shown that the probability of slipping goes 

down as well with more skills. We speculate that the reason for decreased slip is 

that students who are believed to know multiple skills are less likely to make a 

mistake. Another possibility is that multi skill questions demand more 

concentration and thus a student is less likely to make a careless mistake due to 

not paying attention. We also found that knowing the more difficult skill in a 

multi skill question does not help much over knowing only the less difficult skill 

or over knowing neither skill.  

 

    We have investigated the composition function and found that it is 

approximated very well by the AND gate + guess/slip. While cognitive modelers 

may be interested in the slight compensatory effect seen in Table 3, ITS 

developers can have confidence in using an AND assumption for accurate 

assessment when dealing with multi skill items.  
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